期刊文献+

一类具非线性阻尼项的Schr?dinger方程的达布变换 被引量:2

Darboux Transformation for a Class of Schr?dinger Equation with Nonlinear Damping Term
下载PDF
导出
摘要 考虑一类具非线性阻尼项的Gross-Pitaevskii方程,该方程出现在玻色-爱因斯坦凝聚中.首先运用AKNS方法构造方程的Lax对,并推导出相应的达布变换公式,最后应用此公式得到该方程的孤子解. In this paper,we consider the solitons of the Gross-Pitaevskii equation with nonlinear damping term in Bose-Einstein condensation. Firstly,by using AKNS method we construct the Lax pair of this equation and then give the corresponding Darboux transformation. Finally,we obtain the solitons.
作者 李倩 舒级 杨袁 王云肖 汪春江 LI Qian, SHU Ji, YANG Yuan, WANG Yunxiao, WANG Chunjiang(College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, Sichuan)
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2018年第2期154-158,共5页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11371267和11571245) 四川省科技厅应用基础项目(2016JY0204)
关键词 GROSS-PITAEVSKII方程 LAX对 达布变换 孤子解 玻色-爱因斯坦凝聚 Gross-Pitaevskii equation Lax pair Darboux transformation solitons Bose-Einstein condensation
  • 相关文献

参考文献6

二级参考文献28

  • 1[1]Gu C H, Zhou Z X. On Darboux transformations for soliton equations in high dimensional space-time. Lett Math Phys, 1994,32(1):1~10.
  • 2[2]Cao C W, Geng X G, Wu Y T. From the special 2+1 Toda lattice to the Kadomtsev-Petviashvil equation. J Math Phys, 1999,40:3943.
  • 3[3]Zhou Z X. Nonlinear constraints and soliton equations of 2+1 dimensional three-wave equation. J Math Phys, 1998,39:986.
  • 4[4]Li Y S, Ma W X, Zhang J E. Darboux transformations of classical Boussinesq system and its new solutions. Phys Lett A, 2000,275:60~66.
  • 5[5]Levi D, Sym A, Rauch-Wojciechowski S. N-soliton on a vortex filament. Phys Lett A, 1983,94:408~411.
  • 6[6]Wu Y T, Zhang J S. Quasi-periodic solution of a new 2+1 dimensional coupled soliton equation. J Phys A: Math Gen, 2001,34:193~210.
  • 7[1]Wang M L, Wang Y M. A new Backlund transformation and multi-soliton solutions to the KdV equation with general variable coefficients [J]. Physics Letter A,2001,287:211-216.
  • 8[2]Fan E G, Hon Y C. A series of traveling wave solutions for two variant Boussinesq equations in shallow water waves[J].Chaos,Solitons and Fractals, 2003,15:559-566.
  • 9[3]Wang M L,Wang Y M, Zhou Y B. An auto -Backlund transformation and exact solutions to a generalized KdV equation with variable coefficients and their applications[J]. Physics Letter A, 2002, 303:45-51.
  • 10[4]Fan E G, Zhang H Q. A note on the homogeneous balance method [J]. Physics Letter A, 1998,246:403-406.

共引文献25

同被引文献17

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部