期刊文献+

基尔霍夫型吊桥方程指数吸引子的存在性 被引量:6

The Existence of Exponential Attractors for the Kirchhoff-type Suspension Bridge Equations
下载PDF
导出
摘要 研究基尔霍夫型吊桥方程解的长时间动力学行为.先验证解半群的渐近紧性,进而运用所谓的加强的平坦性条件,在较弱的非线性项条件下,得到该方程指数吸引子的存在性,改进和推广了一些已有的结果. The long-time dynamical behavior of solutions for the Kirchhoff-type suspension bridge equations is discussed. Under a weaker condition of the nonlinearity,we prove the asymptotic compactness of semigroup firstly. Next,the existence of exponential attractors is shown by a new method of enhanced flattening property. Some known results are improved and extended.
作者 贾澜 马巧珍 JIA Lan, MA Qiaozhen(College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gans)
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2018年第2期185-189,共5页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11561064和11361053) 甘肃省自然科学基金(145RJZA112)
关键词 吊桥方程 加强的平坦性条件 指数吸引子 suspension bridge equations enhanced flattening property exponential attractor
  • 相关文献

参考文献2

二级参考文献30

  • 1LAZER A C, MCKENNA P J. Large-amplitude periodic oscillation in suspension bridge., some new connections with nonlinear analysis[J] SIAM Rev, 1990, 32.. 537-578.
  • 2MA Qiao-zhen, ZHONG Cheng-kui. Existence of strong solutions and attractors for the suspension bridge equations[J]. J of Sichuan University, 2006, 43.- 271-276.
  • 3ZHONG Cheng-kui, MA Qiao-zhen, SUN Chun- you. Existence of strong solutions and attractors for the suspension bridge equations [J]. Nonl Anal, 2007, 67.. 442-454.
  • 4MA Qiao-zhen, ZHONG Cheng-kui. Existence of strong solutions and global attractors for the coupled suspension bridge equations [J]. J Differential Equations, 2009, 246: 3755-3775.
  • 5MA Qiao-zhen, ZHONG Cheng-kui. Existence of global attractors for the coupled system of suspension bridge equations [J] J Math Anal Appl, 2005, 308: 365-378.
  • 6MA Qiao-zhen, WANG Su-ping, CHEN Xiao-bao. Uniform compact attractors for the coupled suspension bridge equations [J]. Appl Math Comput, 2011, 217.. 6604-6615.
  • 7BALL J M. Stability theory for an extensible beam [J] J Differential Equations, 1973(14).. 399- 418.
  • 8BOCHICCHIO I, GIORGI C, VUK E. Long-term damped dynamics of the extensible suspension bridge: I [J]. International J Differential Equations, 2010, 10: 1155-1174.
  • 9MA Shan, ZHONG Cheng-kui. The attractors for weakly damped non-autonomous hyperbolic equations with a new class of external force[J]. Discrete and Continuous Dynamical Systems, 2007, 18.. 53-70.
  • 10MA Qing-feng, WANG Shou-hong, ZHONG Cheng-kui. Necessary and sufficient conditions for the existence of global attractor for semigroups and applieation[J]. J Indiana University Math, 2002, 51: 1541-1559.

共引文献4

同被引文献30

引证文献6

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部