期刊文献+

三次B-样条配点法定价欧式看跌期权 被引量:1

Cubic B-spline Collocation Method for Pricing European Put Option
下载PDF
导出
摘要 基于重新定义的基函数,给出了Black-Scholes模型下欧式看跌期权定价的三次B-样条配点法.利用这种改进的三次B-样条配点法和有限差分法离散Black-Scholes偏微分方程,并对差分格式的稳定性进行分析,得到稳定性条件.数值实验表明,所构造方法的准确性,有效地提高了计算效率,且其Crank-Nicolson格式的数值结果要优于隐式欧拉格式. A cubic B-spline collocation method is proposed for pricing Black-Scholes European put option model based on redefined basis functions. The Black-Scholes partial differential equation is discreted with this improved cubic B-spline collocation method and the finite difference method. The stability of difference scheme is analyzed and a stability condition is obtained. The results of a numerical experiment illustrate the accuracy of the constructed method,which improves the calculation efficiency. It is shown that the Crank-Nicolson scheme is better than the implicit Euler scheme.
作者 吴蓓蓓 WU Beibei 1,2(1. School of Mathematics Science, Tongji University, Shanghai 200092 ; 2. School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 20009)
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2018年第2期246-251,共6页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11271289和11502141)
关键词 欧式看跌期权 BLACK-SCHOLES方程 三次B-样条 有限差分 European put option Black-Scholes equation cubic B-spline finite difference
  • 相关文献

参考文献2

二级参考文献23

  • 1LI R H, CHEN Z Y,WU W. Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite VolumeMethods[ M]. New York:Marcel Dekker,2000.
  • 2费斯泰赫.计算流体动力学导论:有限体积法[M].2版.北京:世界图书出版公司,2010.
  • 3HUANG C S, HUANG C H,WANG S. A fitted finite volume method for the valuation of options on assets with stochastic volatili-ties[J]. Comput,2006,77(3) :297 -320.
  • 4WANG S. A novel fitted finite volume method for the Black - Scholes equation governing option pricing[ J]. Numer Analysis,2004,24(4):699 - 720.
  • 5ANGERMANN L, WANG S. Convergence of a fitted finite volume method for the penalized Black - Scholes equation governingEuropean and American option pricing[ J]. Numer Math,2007,106(1) :1 -40.
  • 6WANG S, YANG X Q, TEO K L. Power enaplty method for a linear complementarity problem arising from American option valua-tion[ J]. J Optim Theor Appl,2006,129(2) :227 -254.
  • 7ZHANG K, WANG S. Pricing options under jump diffusion processes with fitted finite volume method[ J]. Appl Math Comput,2008,201(1):398 -413.
  • 8ZVAN R, FORSYTH P A, VETZAL K R. Penalty methods for American options with stochastic volatility[ J]. J Comput ApplMath,1998,91(2) :199 -218.
  • 9FORSYTH P A,VETZAL K R. Quadratic convergence for valuing American options using a penalty method[ J]. SIAM J SCIComput,2002,23(6) :2095 -2122.
  • 10GAN X T, YIN J F. Symmetric finite volume method for second order variable coefficient hyperbolic equations [ J ]. Appl MathComput,2015,258(19) : 1015 -1028.

共引文献13

同被引文献4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部