摘要
通过将带有参数的Gaussian函数和测量数据作卷积,把不适定问题转化为适定问题进行求解,给出基于Morozov偏差原理的后验参数选取规则并得到了精确解和正则近似解之间的误差估计。数值实验表明了磨光正则化后验参数选取规则的有效性。
We transform the ill-posed problem into a well-posed problem by convolutioning the Gaussian function with parameters and the measurement data. A posteriori parameter choice rule is given which is based on Morozov's discrepancy principle and the er- ror estimates between the exact solution and its approximation are also given. Numerical experiments show the validity of mollifica- tion regularization posteriori parameter choice rule.
作者
丁凤霞
程浩
DING Feng-xia, CHENG Hao(School of Science, Jiangnan University, Wuxi 214122, Jiangsu, Chin)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2018年第2期18-24,共7页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(11426117)
江苏省自然科学基金资助项目(BK20130118)
中国石油化工股份有限公司科技资助项目(P15165)
关键词
椭圆方程柯西问题
磨光正则化方法
后验参数选取
误差估计
数值实验
the Cauchy problem of an elliptic equation
mollification regularization method
posteriori parameter choice
error esti-mation
numerical experiment