摘要
利用多值映射的不动点定理,给出了以下带有非局部积分边值Hadamard型分数阶微分包含解的终结点型存在性定理:{Dαx(t)∈F(t,x(t)),1<t<e,1<α≤2,x(1)=x(0),A/Γ(γ)∫η1(logη/s)γ-1x(s)/s ds+Bx(e)=c,γ>0,1<η<e},其中D~α表示Hadamard型分数阶导数,F:[1,e]×R→P(R)是多值映射,A,B,c是常数。所得结果将已有的单值结果推广到多值情形。
Based on fixed-point theorem for multi-value maps, the endpoint theorem on the existence of solutions for the following Hadamard fractional order differential inclusions with nonlocal integral boundary value problems is given:{Dαx(t)∈F(t,x(t)),1〈t〈e,1〈α≤2,x(1)=x(0),A/Г(γ)∫η1(logη/s)γ-1x(s)/sds+Bx(e)=c,γ〉0,1〈η〈ewhere Dα is Hadamard type fractional derivative, F: [1, e]×R→2(R) is a multi-valued map, A, B, c are constants. The aim of this paper is to extend known single value result to multi-valued framework.
作者
杨丹丹
YANG Dan-dan(School of Mathematical Science, Huaiyin Normal University, Huaian 223300, Jiangsu, Chin)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2018年第2期46-51,共6页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(11426141)
江苏省自然科学基金资助项目(BK20170067)
关键词
Hadamard型分数阶微分包含
边值条件
终结点定理
多值映射
Hadamard-type fractional differential inclusions
boundary value conditions
endpoint theorem
multi-valued maps