期刊文献+

基于探测粒子群的小波核极限学习机算法 被引量:2

Wavelet Kernel Extreme Learning Machine Algorithm Based on Detecting Particle Swarm Optimization
下载PDF
导出
摘要 在分析核极限学习机原理的基础上,将小波函数作为核函数运用于极限学习机中,形成小波核极限学习机(WKELM)。实验表明,该算法提高了分类性能,增加了鲁棒性。在此基础上利用探测粒子群(Detecting Particle Swarm Optimization,DPSO)对WKELM参数优化,最终得到分类效果较优的DPSO-WKELM分类器。通过采用UCI基因数据进行仿真,将该分类结果与径向基核极限学习机(KELM)、WKELM等算法结果进行比较,得出所提算法具有较高的分类精度。 In this paper,the principle of the kernel extreme machine was studied.Wavelet function was chosen to be the extreme learning machine's kernel function.Experiments show that this algorithm improves the classification accuracy and increases the robustness.Based on this method,we used detecting particle swarm optimization(DPSO)to optimize and set the initial parameters of WKELM in order to obtain the optimal WKELM classifier DPSO-WKELM.We used UCI gene data for simulation.The classification results are compared with the results of radial basis kernel extreme learning machine(KELM)and WKELM.The comparison shows that the proposed algorithm has higher classification accuracy.
出处 《计算机科学》 CSCD 北大核心 2016年第S1期77-80,共4页 Computer Science
基金 国家自然科学基金资助项目(61272315 60842009) 浙江省自然科学基金(Y1110342 Y1080950)资助
关键词 核极限学习机 探测粒子群 算法优化 分类精度 KELM DPSO Algorithm optimization Classification accuracy
  • 相关文献

参考文献4

  • 1Zhibin He,Xiaohu Wen,Hu Liu,Jun Du.A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region[J]. Journal of Hydrology . 2014
  • 2Guang-Bin Huang,Lei Chen.Enhanced random search based incremental extreme learning machine[J]. Neurocomputing . 2007 (16)
  • 3Shi Y,Eberhart R C.A modified swarm optimizer. IEEE International Conference of Evolutionary Computation . 1998
  • 4Guang-Bin Huang,Hongming Zhou,Xiaojian Ding.Extreme Learning Machine for Regression and Multiclass Classification. IEEE Transactions on Systems Man and Cybernetics . 2012

共引文献4

同被引文献19

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部