期刊文献+

基于相对密度的孤立点和边界点识别算法 被引量:1

Recognition Algorithm of Outlier and Boundary Points Based on Relative Density
下载PDF
导出
摘要 根据孤立点是数据集合中与大多数数据的属性不一致的数据,边界点是位于不同密度数据区域边缘的数据对象,提出了基于相对密度的孤立点和边界点识别算法(OBRD)。该算法判断一个数据点是否为边界点或孤立点的方法是:将以该数据点为中心、r为半径的邻域按维平分为2个半邻域,由这些半邻域与原邻域的相对密度确定该数据点的孤立度和边界度,再结合阈值作出判断。实验结果表明,该算法能精准有效地对多密度数据集的孤立点和聚类边界点进行识别。 According to the fact that outlier points are the data that are inconsistent with most of data in a data set,and that boundary points are located on the edge of data area with different densities,an algorithm based on relative density was proposed to determine the outlier and boundary points.Through dividing the neighborhood area,which is centered by this point with a radius of r,into two semi-neighborhood areas,and determining this data point's isolation level and boundary level based on the relative density of these semi-neighborhood areas with the original neighborhood area,a final judgment whether a data point is boundary or outlier point can be made according to the threshold value.Experimental results indicate that this algorithm can effectively and accurately identify the outlier and boundary points from multidensity data sets.
作者 李光兴
出处 《计算机科学》 CSCD 北大核心 2016年第S1期236-238 280,280,共4页 Computer Science
关键词 邻域 密度 孤立度 孤立点 边界度 边界点 Neighborhood Density Isolation level Outlier Boundary level Boundary points
  • 相关文献

参考文献1

  • 1Joel W. Branch,Chris Giannella,Boleslaw Szymanski,Ran Wolff,Hillol Kargupta.In-network outlier detection in wireless sensor networks[J]. Knowledge and Information Systems . 2013 (1)

共引文献2

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部