期刊文献+

基于空间映射的蛋白质相互作用网络链接预测算法 被引量:2

Link Prediction Algorithm in Protein-Protein Interaction Network Based on Spatial Mapping
下载PDF
导出
摘要 蛋白质间的相互作用预测问题本质上是复杂网络的链接预测问题。到目前为止,已经有很多方法用于链接预测,这些方法要么只考虑拓扑信息,要么只考虑蛋白质相互作用网络内部的交互信息,但是仅考虑一种信息来预测蛋白质的交互信息是远远不够的。因此提出了一种新方法:将蛋白质相互作用网络看作是一个有权图,根据网络中两节点的拓扑结构和属性信息,分别计算它们的拓扑相似度和属性相似度来预测它们之间是否存在链接关系。在两种相似度平衡方面,考虑基于空间映射的方法,将它们独立地映射到另一空间,并且使它们分别映射的空间尽量相近,从而使得拓扑信息、属性信息有机融合。实验结果表明,提出的算法具有较好的准确率和良好的生物统计特性。 Protein-protein interaction(PPI)prediction is essentially the link prediction problem in the complex network.So far,many of the proposed link prediction methods either only consider topological information,or only consider the PPI interaction information within the network,but it is not enough.Therefore,this paper proposed a new method where the PPI network is represented as a weighted graph.In the graph,according to the two nodes' topology information and attribute information,the topology similarity and attribute similarity can be calculated so as to predict whether there are links between the two nodes.In order to balance the two similarities,we considered the method based on spatial mapping,that is,the similarities are independently mapped to another space,and the spaces are made as close as possible,so as to fuse the topology information and attribute information fusion.The results show that the proposed algorithm has better accuracy and good biometric characteristic.
作者 洪海燕 刘维
出处 《计算机科学》 CSCD 北大核心 2016年第S1期413-417 434,共6页 Computer Science
基金 国家自然科学基金(61379066 61070047 61379064 61472344) 江苏省自然科学基金(BK20130452 BK2012672 BK2012128) 江苏省高校自然科学基金(12KJB520019 13KJB520026)资助
关键词 蛋白质相互作用网络 链接预测 空间映射 PPI network Link prediction Spatial mapping
  • 相关文献

参考文献1

二级参考文献130

  • 1Aiello L M, Barrat A, Schifanella R, et al. Friendship prediction and homophily in social media. ACM Trans Web, 2012, 6: 9.
  • 2Mori J, Kajikawa Y, Kashima H, et al. Machine learning approach for finding business partners and building reciprocal relationships. Expert Syst Appl, 2012, 39: 10402-10407.
  • 3Wu S, Sun J, Tang J. Patent partner recommendation in enterprise social networks. In: Proceedings of the 6th ACM International Conference on Web Search and Data Mining (WSDM'13), Rome, 2013. 43-52.
  • 4Akcora C G, Carminati B, Ferrari E. Network and profile based measures for user similarities on social networks. In: Proceedings of the 12th IEEE International Conference on Information Reuse and Integration, Las Vegas, 2011. 292-298.
  • 5Tang J, Wu S, Sun J M, et al. Cross-domain collaboration recommendation. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'12), Beijing, 2012. 1285-1293.
  • 6Pavlov M, Ichise R. Finding experts by link prediction in co-authorship networks. In: Proceedings of the 2nd International ISWC+ASWC Workshop on Finding Experts on the Web with Semantics (FEWS), Busan, 2007. 42-55.
  • 7Wohlfarth T, Ichise R. Semantic and event-based approach for link prediction. In: Proceedings of the 7th International Conference on Practical Aspects of Knowledge Management (PAKM'08), Yokohama, 2008. 50-61.
  • 8Raeder T, Lizardo O, Hachen D, et al. Predictors of short-term decay of cell phone contacts in a large scale communication network. Soc Netw, 2011, 33: 245-257.
  • 9Marchette D J, Priebe C E. Predicting unobserved links in incompletely observed networks. Comput Stat Data Anal, 2008, 52: 1373-1386.
  • 10Kim M, Leskovec J. The network completion problem: inferring missing nodes and edges in networks. In: Proceedings of the 11th SIAM International Conference on Data Mining (SDM'11), Mesa, 2011. 47-58.

共引文献55

同被引文献37

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部