期刊文献+

大光斑激光雷达数据的森林冠层高度反演 被引量:3

Retrieval of forest canopy height based on large-footprint LiDAR data
原文传递
导出
摘要 针对传统的LM波形分解算法在GLAS大光斑波形数据处理中容易陷于局部最优解,限制了GLAS大光斑激光雷达数据在森林结构参数反演方面应用的问题,该文结合GLAS大光斑数据特征,引进优化后的EM算法对大光斑全波形数据进行分解,获取波形参数最优值。结合波形前缘长度和波形后缘长度,建立树高反演模型,并与LM分解算法建立的模型进行对比分析。研究结果表明,通过改进的EM算法对GLAS大光斑激光雷达数据进行处理,波形特征参数的获取更为精确,达到了较高的树高反演精度。 For the traditional LM waveform decomposition algorithm,it is easy to fall into the local optimal solution in GLAS large-spot data processing,which limits the application of GLAS large-footprint LiDAR data in the inversion of forest structural parameters.This paper combines the characteristics of GLAS large-footprint LiDAR data and introduces the modified EM algorithm to decompose the full-waveform data of large-footprint LiDAR data,and obtains the optimal value of waveform parameters.Based on the length of the leading edge and the length of the trailing edge,the inversion model of tree height was established and compared with the model established by LM decomposition algorithm.The results show that the improved EM algorithm can process the GLAS large-footprint LiDAR data,and obtain more precise waveform parameters,and achieve high inversion accuracy of tree height.
作者 张良 姜晓琦 周薇薇 张帆 ZHANG Liang1, JIANG Xiaoqi2, ZHOU Wei2. ZHANG Fan(1. Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; 2. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, Chin)
出处 《测绘科学》 CSCD 北大核心 2018年第3期148-153,160,共7页 Science of Surveying and Mapping
基金 国家自然科学基金项目(61378078 41601504)
关键词 GLAS 改进EM算法 波形分解 森林冠层高度反演 GLAS modified EM algorithm waveform decomposition forest canopy height inversion
  • 相关文献

参考文献2

二级参考文献14

  • 1庞勇,赵峰,李增元,周淑芳,邓广,刘清旺,陈尔学.机载激光雷达平均树高提取研究[J].遥感学报,2008,12(1):152-158. 被引量:104
  • 2孙国清,Ranson K J,张钟军.利用激光雷达和多角度频谱成像仪数据估测森林垂直参数(英文)[J].遥感学报,2006,10(4):523-530. 被引量:16
  • 3Ackmann , F. 1999. Airborne laser scanning-present status and future expectations. ISPRS Journal of Photogrammetry &Remote Sensing, 54:64--67
  • 4Baltsavias E P. 1999. A comparison between photogrammetry and laser scanning. 1SPRS Journal of Photogrammetry & Remote Sensing, 54 : 83 --94
  • 5Bilmes J A. 1998. A gentle tutorial of the EM algorithm and its application to parameter estimation for gaussian mixture and hidden markov models. Department of Electrical Engineering and Computer Science. U. C. Berkeley TR-97-021
  • 6Dempster A P, Laird N M, Rubin DB, 1977. Maximum Likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B ,39 ( 1 ), 1--38
  • 7Gamba P, Houshmand B. 2000. Digital surface models and building extraction : a comparison of IFSAR and LIDAR data. IEEE Transaction on Geoscience and Remote Sensing, 38 : (4) : 1959--1968
  • 8Hofton M A, Blair J B, Minster J. 2000. Decomposition of laser altimeter Waveforms. IEEE Transactions on Geoscience and Remote Sensing, 38 : ( 4 ) 1989--1996
  • 9Oliver J J, Baxter R A, Wallace C S. 1996. Unsupervised learning using MML. Machine Learning. Proceedings of the Thirteenth International Conference ( ICML 96 ). Morgan Kaufmann Publishers, San Francisco CA USA
  • 10Optech: ALTM Waveform Digitizer Operation and Processing Manual ALTM 3100. 2006

共引文献38

同被引文献41

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部