摘要
为了研究超微化雷竹笋膳食纤维(dietary fiber,DF)对火腿肠品质特性的影响,将2%和4%(以100 g猪肉计)三种粒径(DF1:(177.82±6.25) μm、DF2:(19.87±1.76) μm、DF3:(8.89±0.45) μm)的膳食纤维应用于火腿肠的制作工艺中。采用感官评价、质构分析、低场核磁共振等方法对新型火腿肠进行综合评价。结果表明:添加4% DF3 的火腿肠的持水力最大为90.28%±0.54%,与对照相比提高8.50%,膳食纤维能显著提高火腿肠的持水性(p<0.05);添加2% DF3 的火腿肠的硬度及咀嚼性下降,但弹性、黏聚性及凝胶强度增强;低场核磁共振中显示新型火腿肠中的水分向快迟豫(即水分结合紧密的方向,T_2时间短的方向)方向移动,结合水比例增加、自由水比例减少更有利于火腿肠储藏;添加2% DF3 的新型火腿肠的色差及感官评分与对照组不存在显著性差异,不影响产品销售。综上可知,2% DF3 是制备新型火腿肠的最佳选择。
In order to study the effect of dietary fiber on the quality of ham sausage,the dietary fiber of 2% and 4% ( in a 100 g pork) was applied to the production of ham sausage by 3 kinds of particle size ( DF1 : ( 177.82 ± 6.25 ) μm, DF2 : ( 19.87 ±1.76) μm,DF3:(8.89 ±0.45 ) μm, respectively), and the new ham sausage was evaluated comprehensively by sensory evaluation ,texture analysis and low field nuclear magnetic resonance. The results showed that the maximum water holding capacity of 4% DF3 was 90.28% ± 0.54%, which was 8.50% higher than that of the control. The dietary fiber could significantly improve the water holding capacity of ham(p 〈 0.05 ).The hardness and chewing of 2% DF3 ham were decreased, but the elasticity, cohesion and gel strength were enhanced. In the low field nnclear magnetic resonance ( NMR), the water content in the new ham was moved in the direction of fast dipping. The proportion of the combined water increased, and the proportion of free water decreased was more favorable for ham sausage storage.There was no significant difference in chromatic aberration and sensory score between the 2% DF3 new ham sausage and the control group, which did not affect the product sales.To sum up,2% DF3 was the best choice for the preparation of new ham.
作者
李璐
苏玉
黄亮
王平
彭昕
LI Lu1, SU Yu1 ,HUANG Liang1'2 , WANG Ping3, PENG Xin3(1.College of Food Science and Engineering, Central South University of ~ orestry and Technology, Changsha 410004, China ; 2.National Engineering Laboratory of Rice and By-product Deep Processing, Changsha 410004, China; 3.College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, Chin)
出处
《食品工业科技》
CAS
CSCD
北大核心
2018年第6期59-64,70,共7页
Science and Technology of Food Industry
基金
江西省科技厅项目(20151BDH80069)
湖南省重点学科项目(2011-76)
中央财政林业科技推广示范资金项目[JXTG(2014)-08]
关键词
雷竹笋
超微化膳食纤维
火腿肠
质构
低场核磁共振
bamboo shoots
superfine dietary fiber
ham sausage
texture
low-field nuclear magnetic resonance