摘要
本文利用鞍点定理得到了二阶哈密尔顿系统{ü(t)+▽F(t,u(t))=0,■t∈R,u(0)-u(T)=u(0)-u(T)=0,T>0在带有混合条件时的周期解的存在性,推广了已有结果.
In this paper, existence of periodic solutions of the following nonautonomous second order Hamiltonian system with mixed condition {ü(t)+?F(t,u(t))=0,?t∈R,{u(0)-u(T)=u(0)-u(T)=0,T〉0 is obtained by using the saddle point theorem. Our results extend some known results.
作者
王明伟
郭飞
聂千千
WANG Ming-Wei , GUO Fei , NIE Qian-Qian(School of Mathematics, Tianjin University, Tianjin 300354, Chin)
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第2期221-225,共5页
Journal of Sichuan University(Natural Science Edition)
基金
国家自然科学基金(11371276
10901118)
关键词
存在性
周期解
二阶哈密尔顿系统
鞍点定理
Existence
Periodic solutions
Second order Hamiltonian systems
Saddle point theorem(2010 MSC 74H20, 34C25, 70H05, 49J35)