期刊文献+

具有Michaelis-Menten收获和避难所的捕食系统的分歧 被引量:1

The bifurcation of a predator-prey system with Michaelis-Menten type prey harvesting and refuge
下载PDF
导出
摘要 在齐次Neumann条件下研究了一类具有扩散的带Michaelis-Menten收获项和避难所的捕食-食饵模型.首先利用稳定性理论证明了正常数平衡解的局部稳定性;其次利用最大值原理、Harnack不等式和能量积分的方法给出了正常数平衡解的先验估计和非常数正解的不存在性;再次由单特征值分歧理论得到了系统发自正常数平衡解处的解分支;最后利用Hopf分歧理论研究了在正常数平衡解处Hopf分歧存在的条件. The bifurcation of a diffusive predator-prey models with Michaelis-Menten type prey harvesting and refuge is considered under homogeneous Neumann boundary condition. Firstly,the local stability of positive constant steady-state solution is obtained by using the theory of stability; secondly,by using the maximum principle,Harnack inequalities and the integral property,the priori estimates of positive steady-state solutions and the non-existence of the non-constant positive steady-state solutions are proved; the local bifurcation from the positive constant steady-state solutions is given by further applying simple eigenvalue bifurcation theory; finally,the positive constant steady-state solution where Hopf bifurcation occurs is investigated by using Hopf bifurcation theory.
作者 王欣雨 李艳玲 WANG Xin-yu, LI Yan-ling(College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, Chin)
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第2期205-214,共10页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金(61672021)
关键词 捕食-食饵模型 先验估计 分歧理论 predator-prey model a prior estimate bifurcation theory
  • 相关文献

参考文献3

二级参考文献41

  • 1李云.具有扩散和群体防卫的简单食物链的Hopf分支[J].应用数学学报,1994,17(2):287-299. 被引量:1
  • 2杨小京.Routh-Hurwitz判别法的一个应用[J].清华大学学报(自然科学版),1996,36(2):79-82. 被引量:5
  • 3ZHANG X, CHEN L, NEUMAN A U. The stage - structure predator - prey model and optimal harvesting policy [ J ]. Math Bio- sci ,2000,101 : 139-153.
  • 4WANG W, CHEN L. A predator- prey system with stage - structure for predator[ J ]. Comput Math Appl, 1997,33:83-91.
  • 5FARIA T. Stability and bifurcation for a delayed predator- prey model and the effect of diffusion[ Jl-Journal of Mathematical Analysis and Applications,2001,254:433-463.
  • 6HU Hai'-jun, HUANG Li-hong. Stability and Hopf bifurcation in a delayed predator - prey system with stage structure for prey [ J]. Nonlinear Anal Real World Application,2010,11:2 757-2 769.
  • 7XU Rui, MA Zhi-en. The effect of stage - structure on the permanence of a predator - prey system with time delay[ J]. Applied Mathematics and Computation,2007,189 : 1 164-1 177.
  • 8YAN Xiang-ping, CHU Yan-dong. Stability and bifurcation analysis for a delayed Lotka- Voltera predator- prey system [ J ]. J Comput Appl Math,2006,196:198-210.
  • 9HASSARD B, KAZARINOFF D, WAN Y H. Theory and application of Hopf bifurcation [ M ]. Cambrige : Cambrige University Press, 1981.
  • 10CASTILLO - CHAVEZ C, THIEME H R. Asymptotically autonomous epidemic models [ C ]. Mathematical Population Dynam- ics : Analysis of Heterogeneity. Volume One : Theory of Epidemics, Wuerz, Canada, 1995.33-50.

共引文献15

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部