摘要
对于任意给定的正整数k,图G的距离匹配数um_k(G)是指任意两条边之间距离大于k的最大边数的集合.令G_(n,p)为经典Erds-Rényi随机图.Kang和Manggala刻画得到了当k≥2,边概率为p=c/n时稀疏Erds-Rényi随机图距离匹配数um_k(G_(n,p))的上界,其中c为足够大的常数.本文第一次利用二阶矩方法获得当k≥2时此类稀疏随机图距离匹配数的下界.
For any positive integer k, the distance matching number, denoted by umk(G), is the largest size of a collection of edges in G such that no two edges are within distance k. Let Gn,p stand for the classic Erdos-Renyi random graph. Kang and Manggala presented an upper bound of umk(Gn,p) for k ≥ 2 and p = c/n with the constant c sufficiently large. In this paper, we firstly consider the lower bound of urnk(Gn,p) = Ω(logn) for k≥2 by the second moment method in this class of sparse random graphs.
作者
田方
TIAN Fang(School of Mathematics, Research Center of Computational Mathematics and Financial Big Data, Shanghai University of Finance and Economics, Shanghai, 200433, P. R. Chin)
出处
《数学进展》
CSCD
北大核心
2018年第2期175-181,共7页
Advances in Mathematics(China)
基金
Foundation item: This work is supported by NSFC (Nos. 11101256, 11271243) and China Scholarship Council (No. 201706485019).