摘要
针对摄影测量点云分类问题,提出一种基于图割算法的面向对象分类方法。由于摄影测量点云质量相对较差,文中首先基于区域增长分割思想,提出一种新的点云体素生成方法,将摄影测量点云聚为不同的对象;然后将不同的对象作为节点,将分类问题建模为一个多标记问题,引入图割算法优化获取邻域内平滑一致的分类结果。利用两组摄影测量点云数据进行实验,正确率分别为87.3%和88.7%,比基于单点的分类方法分别提高2%和2.6%。
Aiming at the classification problem of photogrammetric point cloud,an object-based classification method using a graph cuts algorithm is proposed. Due to the relative poor quality of the photogrammetric point cloud,this paper firstly proposes a new supervoxels generating method to segment the photogrammetric point cloud into different objects based on the idea of region growing. After that,the classification problem is modeled as a multi-label task,while different objects are treated as nodes and the graph cuts algorithm is used to obtain a consistent classification result. The correct rates on two groups of data sets are 87. 3% and 88. 7%,which are 2%and 2. 6% higher than the result in using point-based classification method.
作者
郑特
邹峥嵘
张云生
杜守基
何雪
ZHENG Te, ZOU Zhengrong, ZHANG Yunsheng, DU Shouji, HE Xue(School of Geosciences Info-Physics, Central South University, Changsha 410083, Chin)
出处
《测绘工程》
CSCD
2018年第3期16-19,共4页
Engineering of Surveying and Mapping
基金
卫星测绘技术与应用国家测绘地理信息局重点实验室开放基金(KLSMTA-201505)
国家重点基础研究发展计划资助项目(973计划)(2012CB719903)
国家自然科学基金资助项目(41201472)
关键词
摄影测量点云
点云分类
超体素
面向对象
图割
photogrammetric point cloud
point cloud classification
supervoxels
object-based
graph cut