期刊文献+

基于ENF邻域相关系数的音频篡改盲检测

Blind Detection of Audio Forgery Based on ENF Neighborhood Correlation Coefficient
下载PDF
导出
摘要 为了提高现有的基于电网频率(electric network frequency,ENF)信号的盲篡改检测方法在低信噪比时的检测准确率,提出一种利用ENF信号邻域相关系数的音频篡改盲检测方法.首先将待测音频中提取的ENF信号划分子块,并计算相邻区域子块的相关系数;然后对相关系数序列进行自适应快速横向滤波(fast transversal filter,FTF),根据误差能量的变化检测音频篡改.为了减小干扰的影响以提高篡改检测准确率和篡改定位精度,从正、反两个方向对音频进行上述处理,再结合两个方向的误差能量进行篡改检测.与现有的两种代表性方法相比,所提出的方法不但能精确定位篡改,而且能有效提高音频篡改的检测准确率,尤其是在ENF波动较大和信噪比较低的情况下更有优势. In order to improve the accuracy of the existing blind tamper detection meth- ods based on electric network frequency (ENF) in the case of low SNR, we propose a novel blind detection approach based on the ENF cross-correlation coefficients in neigh- borhood. First, the ENF signal extracted from the query audio is divided into blocks, and the cross-correlation coefficients of the adjacent blocks are calculated. Then the adaptive fast transversal filter (FTF) is performed to the coefficient sequence. According to the variation of the filtering error energy, we can detect audio forgery. In order to reduce the interference and improve the accuracy of forgery detection and localization, the audio is processed in both forward and backward directions. Then the two directions' error energies are combined to detect forgery. Compared with two existing representative methods, the proposed method performs excellent accuracy both in forgery location and forgery detec- tion. Especially under the circumstances of larger ENF fluctuation and lower SNR, the method shows more advantages.
作者 吕志胜 谭丽 封斌 胡永健 LU Zhi-sheng1, TAN Li1, FENG Bin1, HU Yong-jian2((1. School of Information and Communication Engineering, Guangzhou Maritime University, Guangzhou 510725, China 2. School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510640, Chin)
出处 《应用科学学报》 CAS CSCD 北大核心 2018年第2期287-298,共12页 Journal of Applied Sciences
基金 广东省科技计划国际协同创新项目基金(No.2017A050501002) 中新国际研究院基金(No.206-A017023) 广州市科技计划项目基金(No.201510010275) 广东省教育厅2015年重点平台及科研项目特色创新类项目基金(No.2015KTSCX100)资助
关键词 音频篡改盲检测 电网频率信号 快速横向滤波自适应算法 误差能量 双向处理 blind detection of audio forgery, electric network frequency (ENF) signal, fasttransversal filter (FTF) adaptive algorithm, error energy, double direction processing
  • 相关文献

参考文献1

二级参考文献15

  • 1Daeid N N, Houck M M. Interpol's forensic science review [ M ]. Lyon: CRC Press,2010:379-380.
  • 2Brixen E. ENF quantification of the magnetic field [ C ]// AES 33rd International Conference on Audio Forensics, Theory and Practice. Denver, Colorado: AES, 2008.
  • 3Grigoras C. Digital audio recording analysis the electric network frequency criterion [ J ]. International Journal of Speech Language and the Law,2005,12( 1 ) :63-76.
  • 4Grigoras C. Applications of ENF criterion in forensic audio, video, computer and telecommunication analysis [ J ]. Fo- rensic Science International ,2007,167 ( 2 ) : 136-145.
  • 5Cooper A J. The electric network frequency (ENF) as an aid to authenticating forensic digital audio recordings-An automated approach [ C ]//AES 33rd International Con- ference on Audio Forensics, Theory and Practice. Denver, Colorado : AES, 2008.
  • 6Huijbregtse M, Geradts Z. Using the ENF criterion for de- termining the time of recording of short digital audio re- cordings [ C]//3rd International Workshop on Computa- tional Forensics. Berlin : Springer-Verlag ,2009 : 116-124.
  • 7Garg R, Varna A L,Wu M. Seeing ENF:natural time stamp for digital video via optical sensing and signal processing [ C ]//19th ACM International Conference on Muhimedia. Scottsdale : ACM, 2011 : 23- 32.
  • 8Garg R, Varna A L, Hajj-Ahmad A, et al. "Seeing" ENF : power-signature-based timestamp for digital multimedia via optical sensing and signal processing [ J ]. IEEE Transactions on Information Forensics and Security, 2013, 8(9) :1417-1432.
  • 9Hajj-Ahmad A,Garg R,Wu M. Instantaneous frequency esti- mation and localization for ENF signals [ C]//2012 Asia- Pacific Signal & Information Processing Association An- nual Summit and Conference( APSIPA ASC). Hollywood, California : IEEE, 2012 : 1-10.
  • 10Hajj-Ahmad A, Garg R, Wu M. ENF based location clas- sification of sensor recordings [ C]//2013 IEEE Interna- tional Workshop on Information Forensics and Security (WIFS). Guangzhou, China : IEEE ,2013 : 138-143.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部