期刊文献+

基于深度学习的图像局部模糊识别 被引量:13

Local Blur Detection of Digital Images Based on Deep Learning
下载PDF
导出
摘要 数字图像中常用模糊操作隐藏或抹去篡改的痕迹.为此,针对常用的高斯模糊、均值模糊及中值模糊操作的识别问题,构建了一种卷积神经网络模型,并给出其网络拓扑结构.在传统的卷积神经网络模型中添加一个信息处理层,提取出输入图像块的滤波频域残差特征,以提高网络模型对一次滤波与二次滤波操作的识别性.实验结果表明,所提方法的准确率较以往传统方法有较大提升,且泛化性能优越,能检测出主流的线性和非线性滤波操作。 Blurring is generally a post-operation to conceal or remove the trace of tam- pering. In this paper, a new convolutional neural network model is proposed, and the corresponding network topology is presented to handle the problems in the detection of blur operations, such as Gaussian blur, average blur, or median blur. An information pro- cess layer is added into the conventional convolutional neural network to extract the residual features of filtering frequency domain, accordingly, improving the accuracy of blur detec- tion between the first-order and the second-order filtering operations. Experimental results demonstrate that the proposed method performs a higher accuracy in blur detection than traditional methods, and is able to discriminate between the common linear and nonlinear blur operations.
作者 杨滨 张涛 陈先意 YANG Bin1,4, ZHANG Tao2, CHEN Xian-yi3(1. School of Design, Jiangnan University, Wuxi 214122, Jiangsu Province, China 2. School of Internet of Things, Jiangnan University, Wuxi 214122, Jiangsu Province, China 3. School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China 4. Key Laboratory of Advanced Process Control of Light Industry of Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu Province, Chin)
出处 《应用科学学报》 CAS CSCD 北大核心 2018年第2期321-330,共10页 Journal of Applied Sciences
基金 国家自然科学基金(No.61232016 No.61502242)资助
关键词 模糊识别 深度学习 卷积神经网络 图像取证 滤波检测 blur detection, deep learning, convolutional neural network, image forensic, filtering detection
  • 相关文献

参考文献3

二级参考文献31

  • 1Kodovske, J, Fridrich J. Steganalysis in resized images// Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada, 2013: 2857-2861.
  • 2Popescu A C, Farid H. Exposing digital forgeries by detecting traces of resampling. IEEE Transactions on Signal Processing, 2005, 53(2): 758-767.
  • 3Stamra M, Liu K J R. Forensic estimation and reconstruction of a contrast enhancement mapping//Proceedings of the [EEE International Conference on Acoustics, Speech and Signal Processing. Dallas, USA, 2010:1698-1701.
  • 4Pevny T, Fridrich J. Detection of double-compression in JPEG images for applications in steganography. IEEE Transactions on Information Forensics and Security, 2008, 3(2) : 247-258.
  • 5Luo W, Huang J, Qiu G. JPEG error analysis and its applications to digital image forensics. IEEE Transactions on Information Forensics and Security, 2010, 5(3): 480-491.
  • 6Cao G, Zhao Y, Ni R, Kot A. Unsharp masking sharpening detection via overshoot artifacts analysis. IEEE Signal Processing Letters, 2011, 18(10): 603-606.
  • 7Cao G, Zhao Y, Ni R, Yu L, Tian H. Forensic detection of median filtering in digital images//Proceedings of the IEEE International Conference on Multimedia and Expo. Singapore, 2010:89-94.
  • 8Kirchner M, Fridrich J. On detection of median filtering in digital images//Proceedings of the SPIE-Media Forensics and Security II. San Jose, USA, 2010: 754110-1:754110-12.
  • 9Yuan H. Blind forensics of median filtering in digital images. IEEE Transactions on Information Forensics and Security, 2011, 6(4): 1335-1345.
  • 10Chen C, Ni J, Huang R, Huang J. Blind median filtering detection using statistics in difference domain//Proceedings of the Information Hiding. Berkeley, USA, 2012:1-15.

共引文献1729

同被引文献147

引证文献13

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部