期刊文献+

基于伪距差分增强的分布式节点时间同步方法

Pseudo-range Differential Integrated Time Synchronizing Method for Anchor Nodes
下载PDF
导出
摘要 传统时频同步方法维持分布式节点之间同步的精度较高,但并不适用于空间非接触节点的时频同步问题.本文提出一种基于伪距差分增强的时间同步方法,给出了系统原理和基本组成,运用总体最小二乘法解算分布式节点的先验钟差信息,并利用卡尔曼滤波构建了主从节点间的时间同步算法模型.仿真校验与结果分析显示,相比独立GPS授时同步,本文提出的系统同步算法能够提高空间分布式节点同步精度,在基线距离平均为25km的条件下,可将节点同步精度控制在亚纳秒量级. Traditional time synchronization method could reach a high precision for distributed nodes, but does not apply to the spatially non-contact nodes. In order to solve the above problems, a time synchronization method based on pseudorange differential GPS was proposed, and the system principle and synchronization scheme are given. Moreover, the clock model of the Anchor Nodes (ANs) is built to estimate synchronization parameter, which is solved by the Total Least Squares (TLS) method. The Kalman Filter (KF) method is derived from the theoretical time synchronization module, which can enhance the real timing and precision. The results of numerical simulating show that the proposed system synchronization and parameter estimation methods can control the synchronization accuracy of distributed node in sub-nanosecond level.
作者 欧阳晓凤 吕大千 曾芳玲 OUYANG Xiaofeng, LU Daqian ,ZENG Fangling(Department of Electronic , National University of Defense Technology, Hefei 23003)
出处 《空间科学学报》 CAS CSCD 北大核心 2018年第2期249-254,共6页 Chinese Journal of Space Science
关键词 时间同步 分布式节点 伪距差分 卡尔曼滤波 Time synchronization, Anchor nodes, Pseudo-range difference, Kalman Filter
  • 相关文献

参考文献2

二级参考文献28

  • 1魏木生,陈果良.加权总体最小二乘问题的解集和性质[J].高校应用数学学报(A辑),1994,9(3):304-311. 被引量:4
  • 2张洪钺,黄劲东,范文雷.全最小二乘法及其在参数估计中的应用[J].自动化学报,1995,21(1):40-47. 被引量:20
  • 3Golub G H and Van Loan C F. An analysis of the total least squares problem[J]. SIAM J Numer Anal. , 1980, 17:883 - 893.
  • 4Van Huffel S and Vandewalle J. The total least squares problem: Computational aspects and analysis [ M ]. SIAM, Philadelphia, 1991.
  • 5Van Huffel S. Recent advances in total least squares tech- niques and errors-in-variables modeling [ M ]. SIAM, Phila- delphia. 1997.
  • 6Van Huffel S and Lemmerling P. Total least squares and er- rors-in-variables modeling: analysis, algorithms and applica- tions [ M ]. Kluwer Academic Publishers, Dordrecht, 2002.
  • 7Schaffrin B. A note on constrained total least-squares estima- tion[ J]. Linear Algebra Appl, 2006, 417 ( 1 ) : 245 - 258.
  • 8Schaffrin B and FELUS Y A. On the multivariate total least- squares approach to empirical coordinate transformations: Three algorithms[J]. J Geod., 2008, 82 (6) : 373 -383.
  • 9Xu Caijun,et al. Strain rates in the Sichuan-Yunnan region based upon the total least squares heterogeneous strain modelfrom GPS data[J]. Terr Atmos Ocean Sci., 2011, 22(2) : 133 - 147.
  • 10崔希璋,等.广义测量平差[M].武汉:武汉测绘科技大学,2001.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部