摘要
集成式电子液压制动(electronic hydraulic braking,EHB)系统使用永磁同步电机(permanent magnet synchronous motor,PMSM)作为动力源,是汽车的关键安全部件之一。针对其主缸液压力控制品质过于依赖液压力传感器的问题,通过选取永磁同步电机的转子角位置及角速度进行模糊C均值(fuzzy C-means,FCM)聚类生成模糊集合,采用基于一阶Sugeno模型的自适应神经模糊推理系统ANFIS对主缸液压力进行估计。仿真与台架实验结果表明,估计算法的预测精度与实时性能满足系统的控制需求。
Electronic hydraulic braking (EHB) system with permanent magnet synchronous motor (PMSM) as power source is one of the key components of vehicle safety. In order to solve the problem that the control quality of hydraulic pressure of master cylinder is over-reliant on pressure sensor, fuzzy sets of rotor position and rotor angular speed of PMSM are generated through fuzzy C-means (FCM) clustering method in this paper, and the adaptive neuro-fuzzy inference system (ANFIS) is applied to estimate the pressure in master cylinder. The results of simulation and bench test indicate that the prediction accuracy and real-time performance of the algorithm meet the requirement of EHB control.
出处
《机电一体化》
2017年第11期8-14,共7页
Mechatronics
基金
国家自然科学基金(项目编号:U1564207)