期刊文献+

HL-2M装置常规偏滤器与雪花减偏滤器热工水力分析对比 被引量:9

Analysis and comparison of the thermal-hydraulic for standard divertor and snowflake-minus divertor of HL-2M tokamak
下载PDF
导出
摘要 采用SOLPS程序模拟预测HL-2M装置常规和雪花减偏滤器靶板上的热通量。当流入边缘等离子体区域的热功率约为10MW时,利用CFX/ANSYS软件分析这两类偏滤器各结构、冷却水温度分布及形变和热应力分布情况。结果表明:等离子体总功率相同,雪花减偏滤器靶板上的最高温度比常规偏滤器低169℃;雪花减偏滤器结构所承受的最大热应力和形变比常规偏滤器低约3/7。不改变热负载剖面分布,按一定比例提升热流密度或延长放电时间,雪花减偏滤器体现出比常规偏滤器靶板温升低、冷却水温均衡等优点。因此,雪花减偏滤器能处理更多流进偏滤器区域的热能,有效地降低偏滤器工程设计要求。 The forecast heat flux on the target plates of the standard and the snowflake-minus divertors for HL-2M tokamak, has been simulated with the SOLPS code. Under the condition that the energy flowing into plasma is about 10MW, the temperature distributions of the structures and the cooling water, the deformations and thermal stress distributions of the structures are analyzed with CFX/ANSYS for the two configurations.. Simulation results indicate that, under the same power flowing into plasma edge region, the highest temperature of the target plate of the snowflake-minus divertor is 169~C lower than that of standard divertor plate. Meanwhile, compared to the standard divertor, the maximum thermal stress and the deformation of the snowflake-minus divertor decrease by a factor of 3/7. Increasing the heat flux in proportion or extending the discharging duration, keeping the distributions of the heat loads on the target plates invariant, temperature rise of the target plate is lower and the cooling water temperature is more balanced for the snowflake-minus divertor. These indicate that the snowflake-minus divertor configuration has a stronger ability to withstand the flowing thermal energy of the divertor region which reduces the requirements of the engineering design.
作者 黄文玉 郑国尧 蔡立君 薛雷 卢勇 刘雨祥 HUANG Wen-yu, ZHENG Guo-yao, CAI Li-jun, XUE Lei, LU Yong, LIU Yu-xiang(Southwestern Institute of Physics, Chengdu 61004)
出处 《核聚变与等离子体物理》 CAS CSCD 北大核心 2018年第1期34-41,共8页 Nuclear Fusion and Plasma Physics
基金 国家磁约束核聚变能发展研究专项(2015GB105002)
关键词 HL-2M装置 雪花减偏滤器 热流密度 结构 冷却水 HL-2M tokamak Snowflake-minus divertor Heat flux Structure Cooling water
  • 相关文献

参考文献3

二级参考文献30

  • 1ASDEX Upgrade Project Team. ASDEX upgrade project larOlaosal phase II [M]. IPP, 1/217, 1984.
  • 2Bohn H, Giesen B, Belov A, et al. Mechanical forces simulation and stress analysis of the TEXTOR vacuum vessel during plasma disruption under 3D eddy currents load [J]. IEEE Transactions on Magnetics, 1996, 32(4): 3004-3007.
  • 3Cho S, Yoon B J, In S R., et al. Design analysis ot electromagnetic forces on the KSTAR vacuum vessel interfaces [J]. Fusion Engineering and Design, 2000, 51-52: 219-227.
  • 4Miki N, Verrecchia M, Barabaschi P, et al. Vertical displacement event/disruption electromagnetic analysis for the ITER-FEAT vacuum vessel and in-vessel components [J]. Fusion Engineering and Design, 2001, 58-59: 555-559.
  • 5Kudo Y, Sakurai S, Masaki K, et al. Design and structural analysis for the vacuum vessel of superconducting tokamak JT-60SC [J]. Ffision Science and Technology, 2003, 44: 333-337.
  • 6来云涛.HT-7U超导托卡马克核聚变装置真空室结构仿真分析与试验研究[D].合肥:中国科学院合肥等离子体物理研究所,2001.
  • 7Gallix R, Baxi C B, Hoffmann E H, et al. Design and analysis of the DIII-D vacuum vessel [A]. Proc. of IEEE Conference [C]. 1986, 842-847.
  • 8达道安.真空设计手册(第3版)[M].北京:国防工业出版社,2006.
  • 9ASDEX Upgrade Project Team. ASDEX upgrade project proposal phase II [M]. IPP, 1/217, January 1984.
  • 10Kikuchi M, Ando T, Amki M, et al. JT-60 upgrade program [J]. Fusion Technology, 1988, 287-292.

共引文献41

同被引文献9

引证文献9

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部