摘要
针对电力大数据推荐结果排名没有考虑电网领域知识关联度,推荐结果的准确度不高的问题,提出了引入知识项关联度的协同过滤推荐算法AR-Item CF.通过计算用户推荐列表得到最终推荐结果.结果表明,该算法能有效地解决推荐结果关联度较低的问题,显著地提高了推荐结果的质量和推荐效率.
Most collaborative filtering recommendation algorithms are based on the object similarity without taking knowledge correlation in grid domain into account,which leads to inaccurate ranking result.Aiming at this problem,this paper adopts the structure of knowledge tree to organize grid domain knowledge and mines the correlation between different knowledge items.The experiment results show that the algorithm can effectively solve the problems of the low correlation degree of recommendation results and significantly improve the quality of the recommendation results and the recommendation efficiency.
作者
曲朝阳
周宁
曲楠
王蕾
刘耀伟
QU Zhao-yang1,2,ZHOU Ning1,2,QU Nan3 ,WANG Lei1,2,LIU Yao-wei4(1. Institute for Information Engineering,Northeast Dianli University,Jilin 132012 ,China; 2. Jilin Province Electric Power Data Research Center of Intelligent Information Processing Engineering,Jilin 132012 ,China; 3. State Grid Jiangsu Electric Power Limited Company Maintenance Branch,Nanjing 210024 ,China~ 4. State Grid Jilin Province Electric Power Limited Company,Changchun 130021 ,Chin)
出处
《东北师大学报(自然科学版)》
CAS
CSCD
北大核心
2018年第1期74-78,共5页
Journal of Northeast Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(51437003)
吉林省科技计划重点转化项目(20160623004TC
20180201092GX)
关键词
电力大数据
协同过滤
知识树
关联度
power big data
collaborative filtering
knowledge tree
correlation degree