期刊文献+

EKF软测量技术在汽车行驶状态估计中的应用 被引量:3

Application of EKF soft computingin vehicle state estimation
下载PDF
导出
摘要 采用一种基于EKF搭建的软测量算法,对汽车纵向车速、质心侧偏角和横摆角速度动态参数进行估计.建立了估算用的3自由度非线性车辆数学模型,EKF利用低成本传感器测得的纵向加速度、侧向加速度和方向盘转角信号,有效地实现对汽车行驶状态进行较为精确的估计.最后通过Carsim与Matlab/Simulink联合仿真对EKF算法进行了验证,从而证实了EKF软测量技术能够准确、实时地估计汽车动态参数. Extended kalman filter soft computing algorithm is proposed and applied to estimate longitudinal velocity,slip angle and yaw rate of vehicle running in this paper.A non-linear estimation model is established for three degrees of freedom vehicle and the extended Kalman filter applies low-cost sensor signals including the longitudinal acceleration,lateral acceleration and steering wheel angle in order to achieve the accurate estimates of the vehicle states.Finally co-simulation is carried out based on Carsim and Matlab/Simulink.The results prove that EKF can accurately and real-time estimate the dynamic vehicle parameters.
作者 郝亮 李刚 刘树伟 HAO Liang , LI Gang, LIU Shuwei(School of Automobile and Traffic Engineering, Liaoning University of Technology,Jinzhou 121001, Liaoning, Chin)
出处 《中国工程机械学报》 北大核心 2017年第5期466-470,共5页 Chinese Journal of Construction Machinery
基金 辽宁省教育厅重大科技平台资助项目(JP2016011)
关键词 EKF 软测量算法 动态参数 精确估计 联合仿真 extended kalman filter soft computing algorithm dynamic parameters accurate estimates co-simulation
  • 相关文献

参考文献4

二级参考文献39

  • 1肖建,白裔峰,于龙.模糊系统结构辨识综述[J].西南交通大学学报,2006,41(2):135-142. 被引量:32
  • 2YANG Hui,CHAI Tian-You.Component Content Soft-sensor Based on Neural Networks in Rare-earth Countercurrent Extraction Process[J].自动化学报,2006,32(4):489-495. 被引量:13
  • 3袁平,毛志忠,王福利.基于递阶T-S模糊系统的软测量建模方法[J].东北大学学报(自然科学版),2006,27(10):1071-1074. 被引量:5
  • 4万德均,房建成,王庆.GPS动态滤波的理论、方法及其应用[M].南京:江苏科学技术出版社,2000.
  • 5HAYTHAM Q, LEONHARD R. Unscented and extended Kalman estimators for non-linear indoor tracking using distance measurements [J]. Positioning Navigation and Communication, 2007 ( 3 ) : 177-181.
  • 6WAN E A, VAN DER MERWE R. The unscented Kalman filter for nonlinear estimation [ J ]. Adaptive Systems for Signal Processing, Communications and Control Symposium, 2000 : 153-158.
  • 7VAN DER MERWE R, WAN E A. The square-root unscented kalman filter for state and parameter estimation [J ]. Acoustics, Speech and Signal Processing Proceedings, 2001,6:3461-3464.
  • 8GORDON N, SALMOND D J, SMITH A F M. Novel approach to nonlinear and non-Gaussian Bayesian state estimarion [ J ]. IEEE Proceedings- F, 1993, 140 (2) : 107-113.
  • 9LIU SH L. Single observer passive location using phase rate of change with the modified UKF [ J ]. Communications, Circuits and Systems Proceedings, 2006, 1: 311-314.
  • 10SIMANDL M, DUNIIK J, KRAL L. Derivative-free estimation methods: new results and performance analysis [R]. PlzeN: 2007:35-39.

共引文献118

同被引文献13

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部