期刊文献+

改进的基于用户的协同过滤算法 被引量:2

Improved Collaborative Filtering Algorithm Based on User
下载PDF
导出
摘要 在推荐系统中,协同过滤算法是应用最广泛和最成熟的推荐算法之一。但是传统的协同过滤算法,在计算用户之间的相似度和评分推荐两个指标上存在着很多不足之处。通过决策树策略找寻了评分和共现值之间的规则,有效的改善了Salton相似度的准确性。同时,根据艾宾浩斯遗忘规律得到启发,引入了时间模型作为评分的权重,有效的解决了用户的兴趣迁移。在仿真实验中,测试了在不同邻居个数下传统算法和改进算法的平均绝对误差。实验证明,改进的协同过滤算法能够降低预测评分的平均绝对误差,提高推荐的准确率。 Collaborative filtering algorithm is one of the most widely used and most mature recommendation algorithms in recommender systems. But the traditional collaborative filtering algorithm has many shortcomings in calculating the similarity between users and the recommendation of two indicators. In this paper,the decision tree strategy is used to find the rules between the score and the total present value,which can effectively improve the accuracy of the Salton similarity. At the same time,according to Ebbinghaus' s forgetting rule,the time model is introduced as the weight of the score,which can effectively solve the migration of user's interest. In simulation experiments,the average absolute error between the traditional algorithm and the improved algorithm is tested under different neighbor numbers. Experimental results show that the improved collaborative filtering algorithm can reduce the average absolute error of prediction score and improve the accuracy of recommendation.
作者 张世显 李平 ZHANG Shixian, LI Ping(School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 13002)
出处 《长春理工大学学报(自然科学版)》 2017年第6期131-135,共5页 Journal of Changchun University of Science and Technology(Natural Science Edition)
关键词 协同过滤 个性化推荐 Salton相似度 兴趣迁移 collaborative filtering personalized recommendation Salton similarity interest transfer
  • 相关文献

参考文献11

二级参考文献196

共引文献624

同被引文献64

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部