摘要
为了求分数阶变系数带弱奇异积分核的Volterra-Fredholm积分微分方程数值解,提出了Legendre小波配点法.利用平移的Legendre多项式解析形式,推导了定义在[0,1]区间上Legendre小波函数的任意阶积分求积公式.利用高斯求积公式来近似定积分项和Legendre小波函数的任意阶积分公式,将原积分微分方程转化为求代数方程组的解.数值算例验证了该方法的有效性.
In order to solve the numerical solution of the Volterra-Fredholm integral differential equation with weakly singular integral kernels,a Legendre wavelet collocation method is proposed in this paper.The fractional integral of a single Legendre wavelet defined in the interval[0,1]is derived from the definition by means of the shifted Legendre polynomial.The original equation is converted to a system of algebraic equation by using Gauss-Legendre quadrature formula to approximate definite integral and the fractional integral to handle the weakly kernel.Some numerical examples are shown to illustrate the efficiency of the proposed method.
作者
许小勇
饶智勇
樊继秋
XU Xiaoyong, RAO Zhiyong, FAN Jiqiu(School of Science,East China University of Technology,Jiangxi Nanchang 330013,Chin)
出处
《河北师范大学学报(自然科学版)》
CAS
2018年第2期100-107,共8页
Journal of Hebei Normal University:Natural Science
基金
国基自然科学基金(11601076)
江西省自然科学基金(20151BAB211004)
江西省教育厅科学技术研究项目(GJJ170445)