期刊文献+

分数阶弱奇异积分微分方程数值解的Legendre小波方法

Legendre Wavelets Method for the Numerical Solution of Fractional Integro-differential Equations with a Weakly Singular Kernel
下载PDF
导出
摘要 为了求分数阶变系数带弱奇异积分核的Volterra-Fredholm积分微分方程数值解,提出了Legendre小波配点法.利用平移的Legendre多项式解析形式,推导了定义在[0,1]区间上Legendre小波函数的任意阶积分求积公式.利用高斯求积公式来近似定积分项和Legendre小波函数的任意阶积分公式,将原积分微分方程转化为求代数方程组的解.数值算例验证了该方法的有效性. In order to solve the numerical solution of the Volterra-Fredholm integral differential equation with weakly singular integral kernels,a Legendre wavelet collocation method is proposed in this paper.The fractional integral of a single Legendre wavelet defined in the interval[0,1]is derived from the definition by means of the shifted Legendre polynomial.The original equation is converted to a system of algebraic equation by using Gauss-Legendre quadrature formula to approximate definite integral and the fractional integral to handle the weakly kernel.Some numerical examples are shown to illustrate the efficiency of the proposed method.
作者 许小勇 饶智勇 樊继秋 XU Xiaoyong, RAO Zhiyong, FAN Jiqiu(School of Science,East China University of Technology,Jiangxi Nanchang 330013,Chin)
出处 《河北师范大学学报(自然科学版)》 CAS 2018年第2期100-107,共8页 Journal of Hebei Normal University:Natural Science
基金 国基自然科学基金(11601076) 江西省自然科学基金(20151BAB211004) 江西省教育厅科学技术研究项目(GJJ170445)
关键词 弱奇异核 LEGENDRE小波 分数阶积分微分方程 平移的Legendre多项式 配点法 weakly singular kernel Legendre wavelets fractional integro-diferential equation shifted Legendre polynomial collocation method
  • 相关文献

参考文献7

二级参考文献76

  • 1尹建华,任建娅,仪明旭.Legendre小波求解非线性分数阶Fredholm积分微分方程[J].辽宁工程技术大学学报(自然科学版),2012,31(3):405-408. 被引量:21
  • 2李弼程,罗建书.小波分析及其应用[M].北京:电子工业出版社,2005.
  • 3Delves L M,Mohamed J L. Computational methods for integral equations [M]. Cambridge: Cambridge University Press, 1985 : 143-- 155.
  • 4Schiavane P, Constanda C, Mioduchowski A. Integral methods in science and engineering[M]. Birkhser: Boston, 2002 : 530--537.
  • 5Razzaghi M. The legendre wavelets operational matrix of integration[J]. International Journal of Systems Science, 2001,32(4) 495-502.
  • 6Maleknejad K. An efficient numerical approximation for the linear class of Fredholm integro-differential equations based on Cattanis method [J]. Communications in Nonlinear Sci- ence and Numerical Simulation, 2011,16(7) : 2672-- 2679.
  • 7Yousefi S, Banifatemi A. Numerical solution of Fredholm integral equations by using CAS wavelets [J]. Applied Mathematics and Computation, 2006, 183(1): 458--463.
  • 8Han Danfu, Shang Xufeng. Numerical solution of integro- differential equations by using CAS wavelet operation ma- trix of integration [J]. Applied Mathematics and Computa- tion, 2007, 194(2): 460--466.
  • 9Saeedi H. A CAS wavelet method for solving nonlinear fredholm integro differential equation of fractional order [J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(3):1154--1163.
  • 10Zakeri G A, Navab M. Sinc collocation approximation of nomsmooth solution of nonlinear weakly singular Volterra integral equation [J]. Journal of Computational Physics, 2010, 229 (18):6548--6557.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部