期刊文献+

嗜热链球菌双功能谷胱甘肽合成酶基因的克隆与表达

Cloning and Expression of Bifunctional Glutathione Synthetase from Streptococcus Thermophilus
下载PDF
导出
摘要 谷胱甘肽作为体内主要的内源性抗氧化剂,在医药、食品、化妆品行业有重要的应用价值.以嗜热链球菌CICC20174为模板,扩增出双功能的γ-谷氨酰半胱氨酸合成酶/谷胱甘肽合成酶基因gsh F.插入表达载体p EASY-E1,转化大肠杆菌BL21(DE3),筛选出重组克隆.经过IPTG诱导,重组大肠杆菌菌体超声波破碎、镍柱亲和层析纯化后,SDS-PAGE显示一条85k Da的蛋白条带,与理论值相符.重组酶Gsh F可将谷氨酸、半胱氨酸、甘氨酸催化生成谷胱甘肽,重组大肠杆菌的胞内酶活为5.85U/L,比活力为0.083U/mg. As a major endogenous antioxidant in vivo, glutathione(GSH) is widely used in pharmaceuticals, foods, and cosmetics. The gene gsh F encoding bifunctional γ-glutamylcysteine synthetase/glutathione synthetase was amplified from genomic DAN of Streptococcus thermophilus CICC 20174 and inserted into expression vector p EASY-E1. Transformed E. coli BL21(DE3) colonies were screened, and induced by IPTG for recombinant potein expression. After sonication and purification by Ni-chelating affinity chromatography, SDS-PAGE indicated a band of 85 k Da, consistent with theoretical value. Reconbinant Gsh F was used to catalyze glutathione formation. Its activity in E. coli culture was 5.85 U/L and the specific activity of purified enzyme reached 0.083 U/mg.
作者 林谦 梁莉妍 陆敏娟 廖金梅 LIN Qian;LIANG Li-yan;LU Min-juan;LIAO Jin-mei(College of Biology & Pharmacy, Yulin Normal University, Yulin, Guangxi 53700)
出处 《玉林师范学院学报》 2017年第5期74-78,共5页 Journal of Yulin Normal University
基金 大学生创新创业训练项目(201610606029)
关键词 谷胱甘肽 嗜热链球菌 双功能谷胱甘肽合成酶 基因克隆 Glutathione Streptococcus thermophilus Bifunctional glutathione synthetase .Gene cloning
  • 相关文献

参考文献3

二级参考文献99

  • 1刘振玉.谷胱甘肽的研究与应用[J].生命的化学,1995,15(1):19-21. 被引量:48
  • 2Cooper A J L, Kristal B S. Multiple roles of glutathione in the central nervous system[J]. Biol Chem, 1997, 378(8): 793-802.
  • 3Udeh K O, Achremowicz B. High-glutathione containing yeast: optimization of production[J]. Acta Microbiol Pol, 1997, 46(1): 105-114.
  • 4Liu C, Hwang C, Liao C. Medium optimization for glutathione production by Saccharomyces cerevisiae[J]. Process Biochem, 1999, 34: 17-23.
  • 5Shimizu H, Araki K, Shioya S, et al. Optimal production of glutathione by controlling the specific growth rate of yeast in fed-batch culture[J]. Biotechnol Bioeng, 1991, 38(2): 196-205.
  • 6Alfafara C G, Miura K, Shimizu H, et al. Fuzzy control of ethanol concentration and its application to maximum glutathione production in yeast fed-batch culture[J]. Biotechnol Bioeng, 1993, 41(4): 493-501.
  • 7Alfafara C G, Miura K, Shimizu H, et al. Cysteine addition strategy for maximum glutathione production in fed-batch culture of Saccharomyces cerevisiae[J]. Appl Microbiol Biotechnol, 1992, 37: 141-146.
  • 8Li Y, Chen J, Mao Y, et al. Effect of additives and fed-batch culture strategies on the production of glutathione by recombinant Escherichia coli[J]. Process Biochem, 1998, 33(7): 709-714.
  • 9Izawa S, Inoue Y, Kimura A. Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae[J]. FEBS Lett, 1995, 368: 73-76.
  • 10Wei G, Li Y, Du G, et al. Application of a two-stage temperature control strategy for enhanced glutathione production in the batch fermentation by Candida utilis[J]. Biotechnol Lett, 2003, 25(11): 887-890.

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部