期刊文献+

Effects of cold plasma treatment on alfalfa seed growth under simulated drought stress 被引量:4

Effects of cold plasma treatment on alfalfa seed growth under simulated drought stress
下载PDF
导出
摘要 The effect of different cold plasma treatments on the germination and seedling growth of alfalfa(Medicago sativa L.) seeds under simulated drought stress conditions was investigated.Polyethyleneglycol-6000(PEG 6000)with the mass fraction of 0%(purified water), 5%, 10%,and 15% were applied to simulate the drought environment. The alfalfa seeds were treated with15 different power levels ranged between 0–280 W for 15 s. The germination potential,germination rate, germination index, seedling root length, seedling height, and vigor index were investigated. Results indicated significant differences between treated with proper power and untreated alfalfa seeds. With the increase of treatment power, these indexes mentioned above almost presented bimodal curves. Under the different mass fractions of PEG 6000, results showed that the lower power led to increased germination, and the seedlings presented good adaptability to different drought conditions. Meanwhile, higher power levels resulted in a decreased germination rate. Seeds treated with 40 W resulted in higher germination potential,germination rate, seedling height, root length, and vigor index. Vigor indexes of the treated seeds under different PEG 6000 stresses increased by 38.68%, 43.91%, 74.34%, and 39.20%respectively compared to CK_(0-0), CK_(5-0), CK_(10-0), and CK_(15-0)(the control sample under 0%, 5%,10%, and 15% PEG 6000). Therefore, 40 W was regarded as the best treatment in this research.Although the trend indexes of alfalfa seeds treated with the same power were statistically the same under different PEG 6000 stresses, the cold plasma treatment had a significant effect on the adaptability of alfalfa seeds in different drought environments. Thus, this kind of treatment is worth implementing to promote seed growth under drought situations. The effect of different cold plasma treatments on the germination and seedling growth of alfalfa(Medicago sativa L.) seeds under simulated drought stress conditions was investigated.Polyethyleneglycol-6000(PEG 6000)with the mass fraction of 0%(purified water), 5%, 10%,and 15% were applied to simulate the drought environment. The alfalfa seeds were treated with15 different power levels ranged between 0–280 W for 15 s. The germination potential,germination rate, germination index, seedling root length, seedling height, and vigor index were investigated. Results indicated significant differences between treated with proper power and untreated alfalfa seeds. With the increase of treatment power, these indexes mentioned above almost presented bimodal curves. Under the different mass fractions of PEG 6000, results showed that the lower power led to increased germination, and the seedlings presented good adaptability to different drought conditions. Meanwhile, higher power levels resulted in a decreased germination rate. Seeds treated with 40 W resulted in higher germination potential,germination rate, seedling height, root length, and vigor index. Vigor indexes of the treated seeds under different PEG 6000 stresses increased by 38.68%, 43.91%, 74.34%, and 39.20%respectively compared to CK_(0-0), CK_(5-0), CK_(10-0), and CK_(15-0)(the control sample under 0%, 5%,10%, and 15% PEG 6000). Therefore, 40 W was regarded as the best treatment in this research.Although the trend indexes of alfalfa seeds treated with the same power were statistically the same under different PEG 6000 stresses, the cold plasma treatment had a significant effect on the adaptability of alfalfa seeds in different drought environments. Thus, this kind of treatment is worth implementing to promote seed growth under drought situations.
出处 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第3期129-135,共7页 等离子体科学和技术(英文版)
基金 supported by China Agriculture Research System(CARS-34)
关键词 cold plasma ALFALFA PEG 6000 stress GERMINATION SEEDLING plant growth cold plasma, alfalfa, PEG 6000 stress, germination, seedling, plant growth
  • 相关文献

同被引文献62

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部