期刊文献+

H7N9型禽流感传播模型的动力学分析 被引量:1

Dynamical Analysis of the H7N9 Avian Influenza Transmission Model
下载PDF
导出
摘要 根据H7N9型禽流感形成的基因检测结果,建立了H7N9型流感病毒在人类中传播的动力学模型.模型中包括水禽、家禽、人3个群体,经过计算得到了平衡点和各个群体的基本再生数,证明了无病平衡点和地方病平衡点的全局稳定性.发现当两类普通流感病毒形成一种新的流感病毒时,不但要控制新型流感病毒在人类中的传播作用,而且要控制普通流感病毒在禽类中的传播,才能有效控制流感病毒在人类中的传播;同时应该尽量避免水禽与家禽之间的接触,减少新型流感病毒的形成对人类造成感染.这为控制H7N9型流感病毒从禽类到人类的传播提供了理论依据. In this paper, according to the results of genetic testing from H7N9 avian influenza, a dynamic model including H7N9 influenza virus is established. In the model, three groups are considered. They are waterfowl, poultry and human. Through analysis the equilibrium point and the basic reproduction number of each group are obtained. The global stability of the disease-free equilibrium point and the endemic equilibrium point under different conditions are proved. The results show that when the two kinds of common flu virus form a new flu virus, the best way to control the spread among the human population is not only to control the spread of the new flu virus effect, but also to control the spread of the common flu virus in poultry. At the same time it is as far as possible to cut the way of contact between waterfowl and poultry. The results provide an effective method for controlling the H7N9 avian influenza spread among poultry and human.
作者 纪振伟 许传青 崔景安 刘志强 Ji Zhenwei, Xu Chuanqing, Cui Jingan, Liu Zhiqiang(School of Science, Beijing University of Civil Engineering and Architecture, Beijing 10004)
出处 《北京建筑大学学报》 2018年第1期64-69,共6页 Journal of Beijing University of Civil Engineering and Architecture
基金 国家自然科学基金项目(11371048) 北京市教委科技面上项目(KM201610016018) 建设部科技计划项目(2016-R4-016)
关键词 H7N9型禽流感 基本再生数 DULAC函数 全局稳定性 H7N9 avian influenza basic reproduction number Dulac function global stability
  • 相关文献

参考文献3

二级参考文献21

  • 1Iwami S, Takeuchi Y, Korobeinikov A, Liu X. Prevention of avian influenza epidemic: What policy should we choose[J]. Journal of Theoretical biology, 2008, (252): 732-741.
  • 2Iwami S, Takeuchi Y, Liu X. Avian-human influenza epidemic model[J]. Mathematical Biosciences, 2007, (207): 1-25.
  • 3Rao D M, Chernyakhovsky A, Rao V. Modelling and analysis global epidemiology of avian in- fluenza[J]. Environmental Modelling and Software, 2009, (24): 124-134.
  • 4Wang W, Backward bifurcation of an epidemic model treatment[J]. Mathematical Biosciences, 2006, (201): 58-71.
  • 5Zhang X, Liu X. Backward bifurcation of an epidemic model with saturated treatment function[J]. Journal of Mathematical Analysis and Applications, 2008, (348): 433-443.
  • 6Capasso V, Serio G. A generalization of the Kermack-Mckendrick deterministic epidemic model[J]. Mathematical Biosciences, 1978, (42): 43-61.
  • 7Wang K, Wang W, Liu X. Viral infection model with periodic lytic immune response[J]. Chaos Solitons and Fractals, 2006, (28): 90-99.
  • 8LIU R S,WU J H,ZHU H P.Media/psychological impact on multiple outbreaks of emerging infectious diseases[J].Comput Math Methods Med,2007,8 (3):153-164.
  • 9CUI J A,SUN Y H,ZHU H P.The impact of media on the control of infectious diseases[J].Journal of Dynamics and Differential Equations,2008,20 (1):31-53.
  • 10LI B,YUAN S L,ZHANG W G.Analysis on an epidemic model with a ratio dependent nonlinear incidence rate[J].Int J Bio math,2011,4(2):227-239.

共引文献16

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部