期刊文献+

一种嵌入项目元数据的跨项目协同过滤推荐算法

Cross-item Collaborative Filtering Recommendation Algorithm for Embedded Item Metadata
下载PDF
导出
摘要 传统的协同过滤推荐系统中用户相似性通常是由余弦、Pearson等方法来计算.然而这些方法都是基于共同的评分项目,在评分数据稀疏的情况下,用户之间的共同评分项目较少,很难准确地找到与目标用户偏好相似的邻居.针对这一问题,提出一种新的方法,通过嵌入项目元数据,利用用户与项目及其属性的交互,采用贝叶斯概率计算项目特征的相似性,并结合EM D方法实现基于元数据表示的跨项目计算相似性.实验结果表明,该方法能够有效地解决用户评分数据稀疏情况下传统的相似性度量方法所存在的不足,提高了推荐的准确性. In traditional collaborative filtering recommender systems,User similarity is usually calculated by cosine similarity or Pearson correlation coefficient.However,these methods are based on common ratings,in the case of rating datas sparse,there is less common scoring between users,and it is difficult to accurately find neighbors that are similar to the target user's preferences.In order to solve this problem,we propose a new method by embedding the item metadatas,using the interaction between the user and the item and its attributes.Bayesian probability is used to calculate the similarity of the project characteristics,and the EMD method is used to realize the similarity of the cross item computation based on metadata representation.The experimental results show that the proposed method can effectively solve the shortcomings of the traditional similarity measure method in the case of sparse user data,thus improving the accuracy of the recommendation.
作者 王秀 刘学军 陈振春 邵帅 WANG Xiu, LIU Xue-jun, CHEN Zhen-chun, SHAO Shuai(College of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China)
出处 《小型微型计算机系统》 CSCD 北大核心 2018年第4期707-712,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61203072)资助 江苏省重点研发计划项目(BE2015697)资助
关键词 协同过滤 数据稀疏 项目元数据 跨项目 collaborative filtering datas sparse item metadatas cross item
  • 相关文献

参考文献2

二级参考文献39

  • 1Ma H, King I, Lyu M. Learning to recommend with social trust ensemble/ /Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Boston, USA, 2009: 203-210.
  • 2Ma H, Zhou D, Liu C, et al. Recommender systems with social regularization/ /Proceedings of the 4th ACM International Conference on Web Search and Data Mining. Hong Kong, China, 2011: 287-296.
  • 3Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks/ / Proceedings of the 4th ACM Conference on Recommender Systems. Barcelona, Spain, 2010: 135-142.
  • 4Bell R, Koren Y, Volin sky C. Modeling relationships at multiple scales to improve accuracy of large recommender systems/ /Proceedings of the 13th ACM SIGKDD Internationa I Conference on Knowledge Discovery and Data Mining. San Jose. USA. 2007: 95-104.
  • 5Onuma K. Tong H. Faloutsos C. Tangent: A novel'. surprise me'. recommendation algorithm/ /Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris. France, 2009: 657-666.
  • 6Musto C. Enhanced vector space models for content-based recommender systems/ /Proceedings of the 4th ACM Conference on Recommender Systems. Barcelona. Spain. 2010: 361-364.
  • 7Song Y. Zhuang Z, Li H, et al. Real-time automatic tag recommendation / /Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Singapore. 2008: 515-522.
  • 8Massa P. Avesani P. Trust-aware collaborative filtering for recommender systems/ /Meersman R. Tari Zeds. On the Move to Meaningful Internet Systems 2004: Coopl'S, DOA, and ODBASE. Italy: Springer Berlin Heidelberg, 2004: 492-508.
  • 9Ma H. Yang H, L yu M, King I. Sorec , Social recommendation using probabilistic matrix factorization/ /Proceedings of the 17 th ACM Conference on Information and Knowledge Management. Napa Valley. USA. 2008: 931-940.
  • 10Konstas I, Stathopoulos V. Jose J. On social networks and collaborative recommendation/ /Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Boston. USA, 2009: 195-202.

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部