摘要
In this study, a composite of form-stable phase change materials (FSPCMs) were prepared by the incorporation of a eutectic mixture of capric-palmitic-stearic acid (CA-PA-SA) into expanded vermiculite (EV) via vacuum impregnation. In the composites, CA-PA-SA was utilized as a thermal energy storage material, and EV served as the supporting material. X-ray diffraction and Fourier transform infrared spectroscopy results demonstrated that CA-PA-SA and EV in the composites only undergo physical combination, not a chemical reaction. Scanning electron microscopy images indicated that CA-PA-SA is sufficiently absorbed in the expanded vermiculite porous network. According to differential scanning calorimetry results, the 70 wt% CA-PA-SA/EV sample melts at 19.3 ℃ with a latent heat of 117.6J/g and solidifies at 17.1 ℃ with a latent heat of 118.3J/g. Thermal cycling measurements indicated that FSPCMs exhibit adequate stability even after being subjected to 200 melting-freezing cycles. Furthermore, the thermal conductivity of the composites increased by approximately 49.58% with the addition of 5 wt% of Cu powder. Hence, CA-PA-SA/EV FSPCMs are effective latent heat thermal energy storage building materials.
In this study, a composite of form-stable phase change materials (FSPCMs) were prepared by the incorporation of a eutectic mixture of capric-palmitic-stearic acid (CA-PA-SA) into expanded vermiculite (EV) via vacuum impregnation. In the composites, CA-PA-SA was utilized as a thermal energy storage material, and EV served as the supporting material. X-ray diffraction and Fourier transform infrared spectroscopy results demonstrated that CA-PA-SA and EV in the composites only undergo physical combination, not a chemical reaction. Scanning electron microscopy images indicated that CA-PA-SA is sufficiently absorbed in the expanded vermiculite porous network. According to differential scanning calorimetry results, the 70 wt% CA-PA-SA/EV sample melts at 19.3 ℃ with a latent heat of 117.6J/g and solidifies at 17.1 ℃ with a latent heat of 118.3J/g. Thermal cycling measurements indicated that FSPCMs exhibit adequate stability even after being subjected to 200 melting-freezing cycles. Furthermore, the thermal conductivity of the composites increased by approximately 49.58% with the addition of 5 wt% of Cu powder. Hence, CA-PA-SA/EV FSPCMs are effective latent heat thermal energy storage building materials.
基金
financially supported by the National Natural Science Foundations of China (Grant Nos. 51472222 and 51372232)
the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130022110006)
the Fundamental Research Funds for the Central Universities for financial support (Grant No. 2652016046)