期刊文献+

基于特征指标推荐系统混淆托攻击半监督检测模型

Semi-supervised detection of obfuscated shilling attack for recommend system based on feature index vector
下载PDF
导出
摘要 本文利用标记用户和特征指标,计算高信任度标记用户特征指标向量的特征值进而压缩输入用户概貌,使得攻击概貌和普通概貌的特征指标值富集到空间的两端最终识别攻击用户。实验证明,该检测算法对混淆托攻击模型在不同填充率下有较高的检测正确率。 This paper calculated characteristic value with high made attack profile and normal profile gather into both ends of th results show that the detection has a higher detection accuracy for trust user label e space to detect confused shilling to compress user profile and attack user. The experimental attack in different fill rate.
作者 卫星君 WEI Xing-jun(Department of Electronic Engineering, Shaanxi Energy Institute, Xianyang 712000, Chin)
出处 《陕西能源职业技术学院学报》 2017年第1期22-28,12,共8页
关键词 推荐系统 托攻击 特征指标 混淆技术 向量压缩 Recommend system shilling attack characteristic index obfuscation techniques vector compression
  • 相关文献

参考文献3

二级参考文献83

  • 1李颖新,李建更,阮晓钢.肿瘤基因表达谱分类特征基因选取问题及分析方法研究[J].计算机学报,2006,29(2):324-330. 被引量:45
  • 2Cranshaw J, Toch E, Hong J, et al. Bridging the gap between physical location and online social networks// Proceedings of the 12th ACM International Conference on Ubiquitous Computing ( UbiComp 2010 ). Copenhagen, Denmark, 2010:119-128.
  • 3Yadav M S, Valck K D, Hennig-Thurau T, Hoffman D L. Social commerce: A contingency frameworks for assessing marketing potential. Journal of Interactive Marketing, 2013, 27(4) : 311-323.
  • 4Sarwat M, Eldawy A, Mokbel M F, Riedl J. PLUTUS: Leveraging location-based social networks to recommend potential customers to venues//Proceedings of the 14th International Conference on Mobile Data Managemant (MDM 2013). Milan, Italy, 2013:26-35.
  • 5Qu Y, Zhang J. Trade area analysis using user generated mobile location data//Proceedings of the 22nd International Conference on World Wide Web (WWW 2013). Rio de Janeiro, Brazil, 2013:1053-1064.
  • 6Stewart K, Glanville J L, Bennett D A. Exploring spatiotem- poral and social network factors in community response to major flood disaster. The Professinonal Geographer, 2014, 66(3) : 421-435.
  • 7Gao H, Barbier G, Goolsby R. Harnessing the crowd sourcing power of social media for disaster relief. IEEE Intelligent Systems, 2011, 26(3): 10-14.
  • 8Bahir E, Peled A. Identifying and tracking major events using geo-social networks. Social Science Computer Review, 2013, 31(4): 458-470.
  • 9McArdle G, Lawlor A, Furey E, Pozdnoukhov A. City-scale traffic simulation from digital footprints//Proceedings of the ACM SIGKDD International Workshop on Urban Computing (UrbComp 2012). Beijing, China, 2012:47-54.
  • 10Liang Y, CaverIee J, Cheng Z, Kameth K Y. How big is the crowd ? Event and location based population modeling in social media//Proceedings of the 24th ACM Conference on Hypertext and Social Media (HT2013). Paris, France, 2013:99-108.

共引文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部