摘要
本文利用标记用户和特征指标,计算高信任度标记用户特征指标向量的特征值进而压缩输入用户概貌,使得攻击概貌和普通概貌的特征指标值富集到空间的两端最终识别攻击用户。实验证明,该检测算法对混淆托攻击模型在不同填充率下有较高的检测正确率。
This paper calculated characteristic value with high made attack profile and normal profile gather into both ends of th results show that the detection has a higher detection accuracy for trust user label e space to detect confused shilling to compress user profile and attack user. The experimental attack in different fill rate.
作者
卫星君
WEI Xing-jun(Department of Electronic Engineering, Shaanxi Energy Institute, Xianyang 712000, Chin)
关键词
推荐系统
托攻击
特征指标
混淆技术
向量压缩
Recommend system
shilling attack
characteristic index
obfuscation techniques
vector compression