期刊文献+

面向多跳WSNs的基于LSSVR的节点定位算法 被引量:3

Least-Squares Support Vector Regression-Based Localization Algorithm in Multi-Hop Wireless Sensor Networks
下载PDF
导出
摘要 多跳无线传感网络WSNs(Wireless Sensor Networks)中的多类应用均需要准确的位置信息。为此,提出面向多跳WSNs的基于最小二乘支持向量回归机定位算法LSSVR-LA(Least-Squares Support Vector Regression location algorithm)。LSSVR-LA算法先引用转发区域概念,并通过转发区域建立测距模型,然后再利用Secant算法估计传感节点与锚节点间距离,最后将这些距离作为LSSVR输入,建立了基于LSSVR定位算法模型。最终,估计未知节点的位置。实验数据表明,提出的LSSVR-LA算法的定位精度得到有效地提高。 In multi-hop wireless networks,location based applications require an accurate localization algorithm.Therefore,Least-Squares Support Vector Regression-based Localization Algorithm( LSSVR-LA) is proposed in this paper. LSSVR-LA introduces a forwarding area,and construct ranging model by forwarding area. Then,the distance between sensors and anchor nodes are estimated by Secant algorithm. The distance is used as the input vector of LSSVR machine,and localization model-based LSSVR is constructed. Numerous simulation results show that LSSVR-GF-RSSI algorithm reduces at least 12% in average localization error compared with traditional localization algorithm.
作者 王自力 郑鑫 WANG Zili1 , ZHENG Xin2(1. Department of Information Engineering, Zhumadian Career Technical College, Zhumadian He'nan 463000, China ; 2.Information Engineering Institute ,Huanghuai University ,Zhumadian He'nan 463000,Chin)
出处 《传感技术学报》 CAS CSCD 北大核心 2017年第11期1747-1751,共5页 Chinese Journal of Sensors and Actuators
基金 河南省高等学校青年骨干教师计划项目(2015GGJS-300)
关键词 无线传感网络 测距 Secant算法 最小二乘支持向量回归机 定位 wireless sensor network ranging secant algorithm least-squares support vector regression localization
  • 相关文献

参考文献7

二级参考文献62

共引文献184

同被引文献22

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部