摘要
为改善深水井控人机配合情况,运用动态贝叶斯网络(DBN)方法分析深水井控人机界面系统的可靠性。基于深水井控人机交互流程,构建系统安全屏障结构图,并转化为对应的DBN模型;依据DBN方法的时间属性,研究系统及各子系统不维修与维修状态下可靠度时间分布;借助贝叶斯后验推理及敏感性分析能力,辨识人机界面系统薄弱风险点。研究结果表明:维修因素是影响深水井控人机界面系统可靠性的关键因素;维修条件下,人因可靠性对深水井控人机界面系统可靠性的影响最大。
For the sake of improving human-machine cooperation,a reliability analysis of deep-water drilling man-machine interface system was carried out based on DBN approach. According to human-machine interaction procedures,safety barrier structure of the system was built and converted into a DBN model. Based on time-property of DBN,relationships between reliability of both system and subsystems and time,under non-maintenance and maintenance conditions,were analyzed. Using posterior reasoning and sensitivity analysis of DBN,weak risk points of human-machine surface system were identified. The results show that the maintenance is the key factor affecting the reliability of human-machine surface system,and that under the maintenance condition,human factor has the greatest influence on the reliability of deep-water drilling man-machine interface system.
作者
陈洁
陈国明
李新宏
杨冬冬
耿凯月
刘长鑫
CHEN Jie1,2, CHEN Guoming1, LI Xinhong1, YANG Dongdong1, GENG Kaiyue1, LIU Changxin1(1 Centre for Offshore Engineering and Safety Technology, China University of Petroleum, Qingdao Shandong 266580, China ;2 Safety Supervision Department, Tianjin Airlines Corporate, Tianjin 300300, Chin)
出处
《中国安全科学学报》
CAS
CSCD
北大核心
2018年第1期124-129,共6页
China Safety Science Journal
基金
国家重点研发计划课题(2017YFC0804501)
关键词
深水井控
人机界面
动态贝叶斯网络(DBN)
安全屏障
可靠性分析
deep-water drilling
human-machine interface
dynamic Bayesian network (DBN)
safety barrier
reliability analysis