摘要
非奇异H-矩阵由于在众多领域的广泛应用而受到人们的普遍关注.利用具有非零元素链的α-对角占优矩阵和不可约α-对角占优矩阵的一些性质,对已有的一些结果进行了改进与推广并且给出了非奇异H-矩阵的新判定准则,最后用数值例子证明了准则的有效性.
Nonsingular H-Matrices have been widely concerned because of their wide application in many fields. In this paper,by using some properties of α-diagonally dominant matrix with a chain of non-zero elements and irreducibly α-diagonally dominant matrix,we improved and generalized some results and gave new criteria for nonsingular H-Matrices. Finally,a corresponding numerical example is given to illustrate the effectiveness of the new criteria.
作者
张争争
张娟
ZHANG Zheng-zheng, ZHANG Juan(Department of Mathematics Xiangtan University, Hunan Xiangtan 411105, Chin)
出处
《重庆工商大学学报(自然科学版)》
2018年第1期79-82,共4页
Journal of Chongqing Technology and Business University:Natural Science Edition
基金
国家自然科学基金青年项目(11401505)
博士后科学基金面上资助一等资助项目(2015M582819)
湖南省自然科学基金青年项目(2017JJ3305)
湖南省教育厅青年项目(16B257)
关键词
非零元素链
Α-对角占优矩阵
不可约矩阵
非奇异H-矩阵
a chain of non-zero elements
or-diagonally dominant matrices
irreducibility matrix
nonsingularH-matrices