期刊文献+

结合三部图综合扩散的Slope One推荐算法

Slope One Recommendation Algorithm Through Combining Integrated Diffusion on Tripartite Graph
下载PDF
导出
摘要 Slope One算法在评分预测时没有考虑项目之间的推荐关系,导致推荐的准确性和多样性不高,故提出了一种结合三部图综合扩散的Slope One算法.首先在三部图中加入了项目类别节点,然后利用三部图综合扩散计算项目之间的推荐度,最后利用得到的推荐度结合Slope One进行评分预测,由于三部图综合扩散算法同时经过用户节点和项目类别节点进行扩散,并且计算得到的项目之间的推荐度是非对称的,更能体现用户兴趣.本文在MovieLens数据集上利用4种评价指标进行5-折交叉验证.实验结果表明:算法有效的提高了预测的准确度和多样性. The Slope One algorithm does not consider the recommended level between items when predict ratings, so the accuracy and diversity are not high. Therefore, a Slope One algorithm through combining integrated diffusion on tripartite graph is proposed. The idea is to add the genre nodes into the tripartite graph, and calculate the Slope One prediction ratings with the recommended level that calculated by the tripartite graph integrated diffusion algorithm. Since the diffusion through user nodes and item nodes, and the recommended level between the items is asymmetric, so it is better to reflect the user interest. The proposed method was tested by 5-fold cross-validation with four metrics, and the experiments on the MovieLens show that our approach achieves great improvement of prediction accuracy and diversity.
作者 王冉 徐怡 何明慧 胡善忠 WANG Ran1, XU Yi12, HE Ming-hui1, HU Shan-zhong1(1. Department of Computer Science and Technology, Anhui University, Hefei 230601, China; 2. Key Lab of IC&SP, Ministry of Education, Anhui University, Hefei 230039, Chin)
出处 《微电子学与计算机》 CSCD 北大核心 2018年第4期6-11,共6页 Microelectronics & Computer
基金 国家自然科学基金(61402005) 安徽省自然科学基金项目(1308085QF114) 安徽省高等学校省级自然科学基金项目(KJ2013A015 KJ2011Z020)
关键词 推荐系统 三部图 SLOPE ONE 综合扩散 recommender system tripartite graph slope one integrated di{{usion
  • 相关文献

参考文献7

二级参考文献139

  • 1霍珊.基于用户行为聚类的个性化推荐算法[J].硅谷,2009,2(22). 被引量:1
  • 2江志恒,刘乃芩.论遗忘函数——关于记忆心理学的数学讨论[J].心理科学进展,1988(3):56-60. 被引量:13
  • 3王辉,高利军,王听忠.个性化服务中基于用户聚类的协同过滤推荐[J].计算机应用,2007,27(5):1225-1227. 被引量:43
  • 4Mika P.Ontologies are us:A unified model of social networks and semantics[].Web Semantics: Science Services and Agents on the World Wide Web.2007
  • 5Heymann P,Koutrika G,Garcia-Molina H.Can social bookmarking improve Web search/[].Proc of WSDM’’.2008
  • 6Panagiotis Symeonidis,Alexandros Nanopoulos,Yannis Manol.Tag Recommendationsbased on Tensor Dimensionality Reduction[].RecSys’’.2008
  • 7S. Rendle,L. Schmidt-Thieme.Pairwise Interaction Tensor Factorization for Personalized Tag Recommendation[].Proceedings of the third ACM international conference on Web search and data mining.2010
  • 8Y. Cai,M. Zhang,D. Luo,C. Ding,S. Chakravarthy.Low-order Tensor Decompositions for Social Tagging Recommendation[].Proceedings of the ACM international conference on Web Search and Data Mining.2011
  • 9Symeonidis P,Nanopoulos A,Manolopoulos Y.A unifiedframework for providing recommendations in social taggingsystems based on ternary semantic analysis[].IEEE Transac-tions on Knowledge and Data Engineering.2009
  • 10Zhang Zi-Ke,Liu Chuang.Hypergraph model of social tag-ging networks[].Journal of Statistical Mechanics.2010

共引文献198

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部