期刊文献+

多媒体传感网络学习监控实时反馈方法研究 被引量:4

Research on Real-time Feedback Method for Multimedia Sensing Network Learning Monitoring
下载PDF
导出
摘要 为了降低多媒体传感器网络的数据丢包和时间延迟,提高网络学习的监控实时反馈能力,提出了基于线性移位自适应寻优的多媒体传感网络学习监控实时反馈方法.构建多媒体传感网络的节点优化部署模型,采用簇内传感节点融合跟踪方法进行多媒体信息融合和二维熵特征提取,根据传感节点的阈值进行模糊自适应加权控制,结合线性移位信道分配方法进行多媒体传感网络学习监控反馈链路均衡处理,采用智能寻优算法进行多媒体传感网络传输延迟控制,提高数据的实时反馈能力.仿真结果表明,采用该方法进行多媒体传感网络学习监控实时反馈控制,数据输出的丢包率较低,多媒体信息反馈的时延较小,整个网络的链路均衡性较好. In order to reduce the multimedia sensor network data packet loss and time delay, improve the real-time feedback ability of monitoring network learning, proposes a multimedia sensor network optimization based on linear shift adaptive learning monitor real-time feedback method. The optimal deployment model of multimedia sensor network, the sensor nodes within lhe cluster fusion tracking method for multimedia in, on'nation [usion and the two- dimensional entropy feature extraction, fuzzy adaptive control based on sensor node weighted threshold, combined with linear shift channel allocation method for multimedia sensor network learning monitoring feedback link equalization, using intelligent optimization algorithm for multimedia sensor network transmission delay control, improve the ability of real-time feedback data. Simulation results show that using the method of multimedia the sensor network monitoring real time feedback control, output data lost packet rate is low, the time delay of the multimedia information feedback is small, and the link balance of the whole network is better.
作者 杨柳青 王冲 YANG Liu-qing1,2, WANG Chong1(1 Department of Computer and Information Security, Guilin University of Electronic Technology, Guilin 541004,China; 2 Department of Educational Technology Center, Ynlin Normal University, Guilin 53700, Chin)
出处 《微电子学与计算机》 CSCD 北大核心 2018年第4期130-134,共5页 Microelectronics & Computer
基金 中国科学院信息工程研究所专项研究课题(61632020)
关键词 多媒体传感网络 学习 监控 传输延迟控制 信道均衡 multimedia sensing network learning monitoring transmission delay control channel equalization
  • 相关文献

参考文献4

二级参考文献42

  • 1WANGXiao-yun,YANGLi-zhen,CHENKe-fei.SLEACH: Secure Low-Energy Adaptive Clustering Hierarchy Protocol for Wireless Sensor Networks[J].Wuhan University Journal of Natural Sciences,2005,10(1):127-131. 被引量:12
  • 2丁小平,王薇,付连春.光纤传感器的分类及其应用原理[J].光谱学与光谱分析,2006,26(6):1176-1178. 被引量:47
  • 3LI H, FANG J. Distributed adaptive quantization and estimation for wireless sensor networks [ J ]. IEEE Signal Process. Lett, 2007, 14(10) :669-672.
  • 4L! H, FANG J. Distributed adaptive quantization forwireless sensor networks: from delta modulation to maximum likelihood [ J ]. IEEE Trans. Signal Process., 2008, 56(10) :5246-5257.
  • 5ZISKIND M. Maximum likelihood localization of multiple sources by alternating projection[ J ]. IEEE Trans. Acoust., Speech, Signal Process., 1998, 36(10) :1553-1560.
  • 6AKYILDIZ I, SU W, et al. Wireless sensor networks: a survey[ J ]. Computer Networks, 2002, 38:393-422.
  • 7吴洁,薛玲玲.光纤传感器的研究进展[J].激光杂志,2007,28(5):4-5. 被引量:8
  • 8Kohanbash D, Kantor G, and Martin T, et al.. Wireless sensor network design for monitoring and irrigation control: user-centric hardware and software development [J]. HortTechnology, 2013, 23(6): 725-734.
  • 9Park Y T, Sthapit P, and Pyun J Y. Energy efficient data fragmentation for ubiquitous computing[J]. The Computer Journal, 2014, 57(2): 263-272.
  • 10Padmavathi G and Shanmugapriya D. A survey of attacks, security mechanisms and challenges in wireless sensor networks[J]. International Journal of Computer Science and Information Security, 2009, 4(1/2): 1-9.

共引文献90

同被引文献40

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部