期刊文献+

带相容性约束的车辆路径问题及其混合蚁群算法 被引量:2

A Hybrid Ant Colony Algorithm for the Vehicle Routing Problem with Compatibility Constraints
原文传递
导出
摘要 【目的】着力设计带相容性约束的车辆路径问题的高效启发式算法。【方法】针对带相容性约束的车辆路径问题的特点,提出了一种混合蚁群算法。该算法的核心由蚁群搜索和禁忌搜索组成,对蚁群搜索的状态转移公式和信息素更新规则进行了改进,并在蚁群搜索过程中加入了一个扰动机制,同时在禁忌搜索部分采用了新的邻域结构和禁忌规则。【结果】得到了关于带相容性约束的车辆路径问题的混合蚁群算法。【结论】通过多个算例对算法进行了测试,计算结果表明该算法具有很高的求解效率。 [Purposes]The vehicle routing problem with compatibility constraints(VRPCC)that appears in the cold-chain logistics is a type of complicated vehicle routing problem.So far,research on this problem is scarce.[Methods]In this study,the VRPCC is described in detail and then a hybrid ant colony algorithm is proposed for it according to its characteristics.The main components of our algorithm are ant colony search and tabu search.In the ant colony search,new state transition probability formula and pheromone updating rule are applied and a perturbation phase is added.[Findings]Moreover,a new neighborhood structure and tabu rules are designed for the tabu search.[Conclusions]The algorithm is evaluated based on several test instances,and the results show that our hybrid ant colony algorithm is effective and efficient.
作者 余良 秦虎 YU Liang1, QIN Hu2(1. School of Economics, Wuhan University of Teconology, Wuhan 430070; 2.School of Management, Huazhong University of Science and Technology, Wuhan 430074, Chin)
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第2期1-9,共9页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金面上项目(No.71571077)
关键词 车辆调度问题 冷链物流 蚁群算法 禁忌搜索 相容性约束 vehicle routing problem cold-chain logistics ant colony algorithm tabu search compatibility constrain
  • 相关文献

参考文献2

二级参考文献18

  • 1Laport G.The vehicle routing problem:An overview of exact and approximate algorithms[J].European J of Operational Research,1992,59(1):345-358.
  • 2Dorigo M,Maniezzo V,Colorni A.Ant system:Optimization by a colony of cooperating agents[J].IEEE Trans on System,Man,and Cybernetics,1996,26(1):29-41.
  • 3Maniezzo V,Colorni A.An ANTS heuristic for the frequency assignment problem[J].Future Generation Computer Systems,2000,16(8):927-935.
  • 4Colorni A,Dorigo M.Ant system for job shop scheduling[J].Operation Research,1994,34(1):39-53.
  • 5Costa D.Ant can color graphs[J].J of the Operations Research Society,1997,48(3):295-305.
  • 6Dorigo M,Luca M.A study of some properties of ant-Q[A].Proc of 4th Int Conf on Parallel Problem Solving form Nature(PPSN)[C].Berlin:Springer Verlag,1996:656-665.
  • 7Stutzle T.MAX-MIN ant system[J].Future Generation Computer Systems J,2000,16(8):889-914.
  • 8Gambardella L M,Dorigo M.An ant colony system hybridized with a new local search for the ordering problem[J].Informs J on Computing,2000,12(3):237-255.
  • 9Zhang J H,Xu X H.A new evolutionary algorithm-ant conoly algorithm[J].System Engineering Theory and Application,1999,36(3):84-87.
  • 10Clarck G,Wright J W.Scheduling of vehicles form a central depot to a number of delivery points[J].Operations Research,1964,12(4):568-581.

共引文献132

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部