摘要
【目的】在改进移动最小二乘近似的基础上,讨论了一种稳定化的改进移动最小二乘近似,具有更好的数值稳定性和计算精度。【方法】将稳定化的改进移动最小二乘近似和修正Helmholtz方程的Galerkin积分弱形式相结合,建立了修正Helmholtz方程混合边值问题的改进无单元Galerkin法,并理论分析了在Sobolev空间中的误差。【结果】通过两个数值算例验证了算法的有效性和理论的正确性。【结论】误差随节点间距的减小而降低。
[Purposes]On the basis of the improved moving least square approximation,a stabilized improved moving least squares approximation is discussed to yield results with better computational stability and precision.[Methods]Combining the improved moving least square approximation with Galerkin weak form,the improved element-free Galerkin method is established for the modified Helmholtz equation with mixed boundary value problem.Error analysis of the Galerkin method is provided theoretically in Sobolev spaces.[Findings]Two numerical examples are provided to demonstrate the effectiveness of the method and the correctness of the theoretical analysis.[Conclusions]The errors of the method decrease monotonously as the nodal spacing decreases.
作者
宋娅
李小林
SONG Ya, LI Xiaolin(College of Mathematics Science, Chongqing Normal University, Chongqing 401331, Chin)
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第2期87-92,共6页
Journal of Chongqing Normal University:Natural Science
基金
国家自然科学基金面上项目(No.11471063)
重庆市基础科学与前沿技术研究重点项目(No.cstc2015jcyjBX0083)
关键词
改进移动最小二乘近似
改进无单元Galerkin法
罚函数
误差估计
improved moving least square approximation
improved element-free Galerkin method
penalty function method
error analysis