摘要
【目的】研究混沌中序列映射与极限映射的关系。【方法】在超空间上,引入强一致收敛、Li-Yorke混沌、Li-Yorke-δ混沌和分布混沌的定义,然后利用强一致收敛的定义去讨论Li-Yorke混沌、Li-Yorke-δ混沌和分布混沌中的序列映射与极限映射的关系。【结果】若超空间上的序列映射是Li-Yorke混沌(Li-Yorke-δ混沌、分布混沌)且Li-Yorke混沌集(δ混沌集、分布混沌集)的所有交是不可数集,那么超空间上的极限映射就为Li-Yorke混沌(Li-Yorke-δ混沌、分布混沌);若超空间上的序列映射是Li-Yorke混沌且满足两个条件,则超空间上的极限映射是Li-Yorke-δ混沌。【结论】在超空间上,强一致收敛的条件下,序列映射上的混沌与极映射上的混沌具有保持性。
[Purposes]In order to study the relation between the sequence mapping and the limit mapping in chaos.[Methods]The definition of strongly uniform convergence,Li-Yorke chaos,Li-Yorke-δ chaos and distributional chaos are introduced on the hyperspace.Then,the relation between sequence mapping and limit mapping in Li-Yorke chaos,Li-Yorke-δchaos and distributional chaos are discussed by using the definition of strong uniform convergence.[Findings]If the sequence mapping is Li-Yorke chaos(LiYorke-δchaos,distributional chaos)and that all the intersections of the Li-Yorke scrambled set are uncountable sets on the hyperspace,then the limit mapping is Li-Yorke chaos(Li-Yorke-δchaos,distributional chaos)on the hyperspace.If the sequence mapping is Li-Yorke chaos and satisfies two conditions on the hyperspace,then the limit mapping is Li-Yorke-δchaos.[Conclusions]On the hyperspace,the sequence map and limit map in the chaos are preserved under the condition of strong uniform convergence.
作者
向伟杰
金渝光
XIANG Weijie, JIN Yuguang(School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, Chin)
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第2期93-97,共5页
Journal of Chongqing Normal University:Natural Science
基金
国家自然科学基金(No.11471061)
2013年重庆市高校创新团队建设计划(No.KJPB201308)