期刊文献+

基于相移光纤光栅积分特性的超短光脉冲整形 被引量:2

Ultrashort Optical Pulse Shaping Based on Integral Characteristics of Phase-Shifted Fiber Grating
原文传递
导出
摘要 基于传输矩阵法和耦合模理论,分析相移光纤光栅的传输函数以及透射谱特性,结果表明相移光纤光栅具有较好的积分特性,并且相移光纤光栅的积分阶数与所插入的相移点数成正比。基于相移光纤光栅一阶积分特性设计出一种光脉冲整形结构,该结构可将高斯型超短光脉冲整形成平顶脉冲或对称三角形光脉冲。通过进一步调整结构中的加权系数,该系统还可输出非对称三角形光脉冲。当输入的高斯型光脉冲的脉宽发生±10%的波动时,仍然可以得到效果较好的平顶脉冲和三角形光脉冲,故所设计的光脉冲整形系统具有较好的稳定性。 The transmission functions and the characteristics of transmission spectra of phase-shifted fiber gratings are analyzed based on the transmission matrix method and the coupled mode theory. The results show that the phase-shifted fiber gratings have superior integral property, and the integral order is proportional to the number of inserted phase-shifted points. The pulse shaping structure is designed based on the first-order integral characteristic of phase-shifted fiber grating, which can shape the Gaussian ultrashort optical pulse into a flat-topped pulse or a symmetrical triangular light pulse. The system can output asymmetric triangular light pulses by further adjusting the weighting coefficients in the proposed structure. When the pulse width of the input Gaussian light pulse fluctuates ±10%, the flat-topped pulse and triangular light pulse with high quality can be obtained, which proves that the designed pulse shaping system has high stability.
作者 刘文楷 刘成园 董小伟 Liu Wenkai1, Liu Chengyuan2, Dong Xiaowei2(1College of Computer, North China University of Technology, Beijing 100144, China ; 2School of Electronic and Information Engineering, North China University of Technology, Beijing 100144, Chin)
出处 《中国激光》 EI CAS CSCD 北大核心 2018年第3期281-286,共6页 Chinese Journal of Lasers
基金 国家自然科学基金(61007007) 北方工业大学长城学者后备计划(CCXZ2013007)
关键词 光纤光学 相移光纤光栅 传输矩阵法 积分特性 脉冲整形 fiber optics phase-shifted fiber grating transmission matrix method integral characteristic pulseshaping
  • 相关文献

参考文献10

二级参考文献242

  • 1朱鹏飞,杨镜新,薛绍林,李美荣,林尊琪.超短脉冲的光谱整形[J].中国激光,2003,30(12):1075-1078. 被引量:5
  • 2王琳,延凤平,李一凡,龚桃荣,简水生.非对称切趾对啁啾光纤光栅特性优化的分析[J].光学学报,2007,27(4):587-592. 被引量:10
  • 3D. K. Lam, B. K. Garside. Characterization of single-mode optical fiber filter [J]. Appl. Opt. , 1981, 20(3): 440-450.
  • 4G. Meltz, W. W. Morey. Bragg grating formation and germanosilicate fiber photosensitivity[C]. SPIE, 1991, 1516:185-199.
  • 5K. O. Hill, G. Metlz. Fiber Bragg grating technology fundamentals and overview [J]. IEEE J. Lightwave Technology, 1997, 15(8): 1263-1276.
  • 6E. Devevaque. Optical fiber design for strong gratings photoimprinting with radiation mode suppression [C]. OFC, 1995, Postdeadline Session,PD5.
  • 7M. Yamada, K. Sakuda. Analysis of almost-periodic distributed feedback slab waveguide via a fundamental matrix approach [J]. Appl. Opt., 1987, 26(16): 3474-3478.
  • 8K. A. Winiek. Effective-index method and coupled-mode theory for almost periodic waveguide gratings: a comparison[J]. Appl. Opt. , 1992, 31(6): 757-764.
  • 9J. Capmany, M. A. Muriel. Microwave V-1 transmission matrix formalism for the analysis of photonic circuits: application to fiber bragg gratings [J]. J. Lightwave Technol. , 2003, 21 (2): 3125-3134.
  • 10R.L.Fork,B.I.Greene,C.V.Shank.Generation of optical pulses shorter than 0.1 psec by colliding pulse mode-locking[J].Appl.Phys.Lett.,1981,38(9): 671-672.

共引文献49

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部