期刊文献+

基于深度残差学习的乘性噪声去噪方法 被引量:14

Multiplicative Denoising Method Based on Deep Residual Learning
原文传递
导出
摘要 图像去噪是数字图像处理中最基本的研究内容,也是一项十分关键的技术,一直以来是图像处理领域的难点。图像去噪的好坏直接影响后续图像边缘检测、特征提取、图像分割和模式识别等图像处理。为有效去除乘性噪声的影响,提出一种深度残差学习的乘性噪声去噪方法。该方法通过引入残差优化,解决了卷积神经网络在层数较多时,随着层数加深,梯度在传播过程中逐渐消失的问题。与4种经典去噪算法进行比较,结果表明,该方法在有效去除乘性噪声的同时,可以更好地保留图像的边缘和纹理区域的细节信息,为后续的图像分割、配准和目标识别等奠定基础。 Image denoising is the most basic problem and a key technology in digital image processing, which has always been difficult in the field of image processing. The quality of image denoising directly affects the follow-up image processing, such as image edge detection, feature extraction, image segmentation, and pattern recognition. In order to effectively remove the influence of multiplicative noise, we propose a denoising method based on deep residual learning, which solves the problem that the gradient gradually disappears when the number of convolutional neural network's layers increases by residual optimization. By comparing with four classical denoising algorithms, we make the conclusions that the proposed method can not only effectively remove the multiplicative noise, but also preserve the edge of the image and the detail information of the texture area, which will lay the foundation for image segmentation, registration, object recognition, and so on.
作者 张明 吕晓琪 吴凉 喻大华 Zhang Ming, Lu Xiaoqi, Wu Liang, Yu Dahua(School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, Chin)
出处 《激光与光电子学进展》 CSCD 北大核心 2018年第3期197-203,共7页 Laser & Optoelectronics Progress
基金 国家重点研发计划(2016YFA0600102) 国家自然科学基金(61771266) 内蒙古自治区高等学校科学研究项目(NJZY18150)
关键词 图像处理 深度残差学习 卷积神经网络 乘性噪声 去噪方法 image processing deep residual learning convolutional neural network multiplicative noise denoisingmethod
  • 相关文献

参考文献6

二级参考文献74

  • 1同武勤,凌永顺,黄超超,杨华,樊祥.数学形态学和小波变换的红外图像处理方法[J].光学精密工程,2007,15(1):138-144. 被引量:45
  • 2A Buades, B Coil, J Morel. A review of image denoising algorithms,with a new one[J]. Multiscale Model Simul, 2005, 4(2) : 490-530.
  • 3J Portilla, V Strela, M J Wainwright, et al. Image denoising using scale mixtures of Gaussians in the wavelet domain [J]. IEEE Trans Image Process, 2003, 12(11): 1338-1351.
  • 4Q Chen, N E Huang, S Riemenschneider, et al. ABspline approach for empirical mode decompositions[J ]. Adv Comput Math, 2006, 24(124): 171-195.
  • 5P Flandrin, F Rilling, P Goncaleves. Empirical mode decomposition as a filter bank [J]. IEEE Signal Processing Letters, 2004, 11(2): 112-114.
  • 6J C Nunes, Y Bouaoune, E Delechelle, et al. Image analysis by bidimensional empirical mode decomposition [J]. Image and Vision Computing, 2003, 21(12): 1019-1026.
  • 7C Damerval, S Meignen, V Perrier. A fast algorithm for bidimensional EMD[J]. IEEE Signal Processing Letters, 2005, 12(10): 701 704.
  • 8V Katkovnik, A Foi, K Egiazarian, et al. From local kernel to nonlocal multiple-model image denoising [J ]. International J Computer Vision, 2010, 86(1): 1-32.
  • 9F Duan, Y J Zhang. A highly effective impulse noise detection algorithm for switching median filters [ J ]. IEEE Signal Processing Letters,2010, 17(7) : 647-650.
  • 10M J Li, M K Ng, Y Cheung, et al. Agglomerative fuzzy k- means clustering algorithm with selection of number of cluster [J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(11): 1519-1534.

共引文献97

同被引文献114

引证文献14

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部