摘要
利用非协调三角形类Carey元对一类非线性双曲积分微分方程进行了超收敛分析和外推.基于单元的特殊性质,线性三角形元的高精度分析结果,平均值和导数转移技巧,以及插值后处理技术,得到了半离散格式能量模意义下具有O(h2)阶的超逼近性质和整体超收敛结果.同时,通过构造一个合适的辅助问题,运用Ri—chordson外推格式,导出了具有O(h4)阶的外推结果.
The superconvergence analysis and extrapolation for a kind of nonlinear hyperbolic integro-differential equations by using nonconforming triangular quasi-Carey element are studied. Based on the special properties of the elements, high accuracy analysis result of linear triangular element, mean-value and derivative transfering technique, interpolated postprocessing approach, the superclose properties and global superconvergence result with order O(h2) in energy norm for semi-discrete scheme are obtained. At the same time, by constructing a suitable auxiliary problem, the extrapolation result with order O(h4) is derived through Richardson extrapolation scheme.
作者
李永献
刘常胜
涂慧杰
LI Yong-xian1, LIU Chang-sheng1, TU Hui-jie2(1. School of Mathematics and Physics, Henan University of Urban Construction, Pingdingshan 467036, China ;2. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, Chin)
出处
《数学的实践与认识》
北大核心
2018年第6期255-262,共8页
Mathematics in Practice and Theory
基金
国家自然科学基金(11671369)
河南省科技攻关项目(162300410082)
河南省高等学校重点科研项目(16B110002)
平顶山市软科学研究计划项目(2016R009)
河南城建学院科研基金项目(2016QY018)
关键词
非线性双曲积分微分方程
类Carey元
超逼近和超收敛
外推
nonlinear hyperbolic integro-differential equations
quasi-Carey element
superclose properties and superconvergence
extrapolation