期刊文献+

不匹配不确定线性系统滑模控制设计 被引量:1

Design Sliding Mode Control for Mismatched Uncertain Linear Systems
下载PDF
导出
摘要 滑模控制方法对处理满足匹配不确定的外部扰动或模型不确定具有很好的鲁棒性。然而,很多不确定系统的模型不确定或外部扰动很难满足匹配条件,针对不确定线性系统扰动不满足匹配条件问题设计滑模控制器,为减少扰动影响,将系统不确定扰动通过投影矩阵分成两部分:一部分为匹配扰动,另外一部分为非匹配不确定扰动。经扰动分析知该分解会使不匹配不确定扰动的影响最小并且不会使该部确定的影响放大。根据积分滑模面和滑模趋近律设计滑模控制器,为了进一步减少抖振影响,引入无高频抖振的双极函数代替符号函数。通过Lyapunov稳定定理分析可知,根据积分滑模面和趋近律所设计的控制器的稳定性和鲁棒性能够得到保证。最后,数值仿真算例说明了该方法的有效性。 Sliding-mode control(SMC)is a robust technique,well known for its ability to withstand external disturbances and model uncertainties satisfying the matching condition,but the matching condition is difficult to satisfy.This correspondence proposes a sliding mode controller design for the robust control of mismatched uncertain linear systems.In order to make that the perturbation is minimal, the perturbation is provided into two parts by projection matrix-the matched and unmatched perturbation.It is also shown that when the minimum is attained and the resulting perturbation is not amplified.In order to reduce chattering,a bipolar sigmoid function without high frequency switching is induced to take the place of sign function.The controller based on integral sliding mode and rate reaching law stability is ensured using the Lyapunov method.Simulation results support the analysis developed.
作者 刘津 张仁杰
出处 《控制工程》 CSCD 北大核心 2012年第S1期81-83,共3页 Control Engineering of China
关键词 滑模控制 双极函数 不匹配不确定 积分滑模面 sliding mode control bipolar sigmoid function mismatched uncertain system integral sliding manifold
  • 相关文献

参考文献7

二级参考文献22

  • 1李文林.离散时间系统变结构控制的趋近律问题[J].控制与决策,2004,19(11):1267-1270. 被引量:30
  • 2王洪斌,陈卫东,王洪瑞,郭存良.一种非线性变结构控制器的设计[J].燕山大学学报,2001,25(2):150-152. 被引量:1
  • 3郑艳,朱媛,井元伟.一类欠驱动机械系统基于滑模的变结构控制[J].东北大学学报(自然科学版),2005,26(6):511-514. 被引量:13
  • 4王伟,易建强,赵冬斌,刘殿通.Pendubot的一种分层滑模控制方法[J].控制理论与应用,2005,22(3):417-422. 被引量:19
  • 5孙德滨,程勉,高为炳.非线性变结构控制系统的综合[J].自动化学报,1989,15(3):248-253. 被引量:5
  • 6Shashikanth Suryanrayanan, Masayoshi Tomizula, Matt Weaver. System dynamics and control of bicycles at high speeds[C]. Proc of the American Control Conf. Anchorage AK: IEEE, 2002:845-850.
  • 7Karl J Astrom, Richard E Klein, Anders Lennartsson. Bicycle dynamics and control: Adapted bicycles for education and research[J].Control Systems Magazine, IEEE, 2005, 25(4): 26-47.
  • 8Yasuhito Tanaka, Toshiyuki Murakami. Self sustaining bicycle robot with steering controller[C]. The 8th IEEE Int Workshop on Advanced Motion Control. Kawasaki: IEEE, 2004: 193-197.
  • 9王伟,易建强,赵冬斌,等.一类欠驱动系统的稳定滑模控制方法[C].中国自动化与信息技术研讨会暨2004年学术年会.北京,2004:159-164.
  • 10Lei Guo, Qizheng Liao, Shimin Wei. Nonlinear stabilization of bicycle robot steering control system[C]. Proc of the 2009 IEEE Int Conf on Mechatronics and Automation. Changchun, 2009:3185-3189.

共引文献21

同被引文献17

  • 1Park S, Horowitz R. New adaptive mode of operation for MEMS gyroscopes[J]. ASME Trans. on Dynamic Systems Measurement and Control, 2004, 126(4) :800 - 810.
  • 2Park S, Horowitz R, Hong S. K, et al. Trajectory-switching al- gorithm for a MEMS gyroscope[J]. IEEE Trans. on Instrument and Measurement, 2007, 56(2) : 2561 - 2569.
  • 3Park S, Horowitz R, Tan C W. Dynamics and control of a MEMS angle measuring gyroscope[J]. Sensors & Actuators A Physical, 2008, 144(1):56-63.
  • 4Batur C, Sreeramreddy T, Khasawneh Q. Sliding mode control of a simulated MEMS gyroscope[J]. ISA Transactions, 2006, 45(1) : 99 - 108.
  • 5Fei J T, Wu D. Adaptive sliding mode control using robust feed- back compensator for MEMS gyroscope[J]. Mathematical Problems in Engineering, 2013, 43(3) : 199.
  • 6Fei J T, Zhou J. Robust adaptive control of MEMS triaxial gyro- scope using fuzzy compensator[J]. IEEE Trans . on Systems ,Man, and CyberneticPart B :Cybernetics, 2012,42(6) : 1599 - 1607.
  • 7Chang J L. Dynamic output integral sliding-mode control with disturbance attenuation[J]. IEEE Trans. on Automation Con- trol. 2009. 54(11), 2653-2658.
  • 8Wen C C, Cheng C C. Designing of sliding surface for mis- matched untertain systems to achieve asymptotical stability[J]. Journal of the Franklin Institute,2008, 345(8) : 926 - 941.
  • 9Wang S, Yu D, Yu D. Compensation for unmatched uncertain- ty with adaptive RBF network[J]. International Journal of Engineering Science g Technology, 2011, 3(6) 35 - 43.
  • 10Cao W J, Xu J X. Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems [J]. IEEE Trans. on Automatic Control, 2004, 49(8) : 1355 - 1360.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部