期刊文献+

基于小波-极限学习机的短期风电功率预测 被引量:7

Short-Term Power Prediction of a Wind Farm Based on Wavelet and Extreme Learning Machine
下载PDF
导出
摘要 风能作为可再生绿色能源已经得到世界各国的广泛应用。由于风具有很强的随机性和不稳定性,导致风电的波动剧烈,给电网的安全稳定运行提出了挑战。本文根据风电的强随机性特点和BP网络预测精度低的缺点,提出了基于小波分解和多模型极限学习机的风电功率预测模型。通过小波分解将风电功率时间序列分解为不同频段的子序列,对各个子序列进行分析,在一定程度上弱化了风电的强随机性。再用多模型极限学习机分别对子序列建立模型,对于每一个子序列再利用设定的挂起准则将建立的子序列的模型分为两部分;对于误差小的挂起模型,无需随机方式进行在线更新,用以降低模型的误差波动;对于误差大的更新模型,采用随机方式进行在线更新。可以进一步弱化风电的强随机性。最后将各个子序列的预测结果重构。对内蒙古某风电场的风电功率预测结果表明,本文提出的方法与其他方法相比,具有更高的预测精度。 Based on the strong randomness of wind and the short precision of BP network forecasting,short-term power prediction of a wind farm based on wavelet decomposition and multiple Models extreme learning machine(WD-MMELM) is proposed.Signal is decomposed into several sequences in different band by wavelet decomposition.Decomposed time series are analyzed separately,then building the model for decomposed time series with MMELM.For each sub-model,a suspending criterion is designed to separate the whole models into two parts;the suspending models and the updating models.For the suspending models with minor error,it needn' t adopt the random selection method to update online.For the updating models with major error,it must utilize the random selection method. MMELM improves the accuracy of wind power prediction.In the last the predicted results were added.Through a wind-power simulation analysis of a wind farm in Inner Mongolia,the result shows that the method in this paper has higher power prediction precision compared with other methods.
出处 《控制工程》 CSCD 北大核心 2012年第S1期232-236,共5页 Control Engineering of China
基金 国家高新技术863发展计划(2008AA04Z129) 国家自然科学基金(60504010)
关键词 风力发电 功率预测 小波分解 多模型 极限学习机 wind power generation,power prediction wavelet decomposition multiple models ELM
  • 相关文献

参考文献20

二级参考文献104

共引文献1389

同被引文献58

  • 1韩超,宋苏,王成红.基于ARIMA模型的短时交通流实时自适应预测[J].系统仿真学报,2004,16(7):1530-1532. 被引量:94
  • 2郑为中,史其信.基于贝叶斯组合模型的短期交通量预测研究[J].中国公路学报,2005,18(1):85-89. 被引量:47
  • 3江铭炎,袁东风.人工鱼群算法及其应用[M].北京:科学出版社,2012.
  • 4奚立峰,黄润青,李兴林,刘中鸿,李杰.基于神经网络的球轴承剩余寿命预测[J].机械工程学报,2007,43(10):137-143. 被引量:56
  • 5Qiu Hai, Lee J, Lin Jing, et al. Wavelet Filter- based Weak Signature Detection Method and Its Application on Rolling Bearing Prognostics [J]. Journal of Sound and Vibration, 2006, 289(4); 1066-1090.
  • 6Du Shichang, La Jun, Xi Lifeng. Degradation Process Prediction for Rotational Machinery Based on Hybrid Intelligent Model[J]. Robotics and Computer-Integrated Manu[acturing, 2012, 28(2) : 190-207.
  • 7Zhao Feng, Chen Jin, Xu Wei. Condition Prediction Based on Wavelet Packet Transform and Least Squares Support Vector Machine Methods[J]. Pro- ceedings of the Institution of Mechanical Engi- neers, Part E: Journal of Process Mechanical Engi- neering, 2009, 223(2): 71-79.
  • 8Pan Yuna, Chen Jin, Li Xinglin. Bearing Perform- ance Degradation Assessment Based on Lifting Wavelet Packet Decomposition and Fuzzy C-means [J]. Mechanical Systems and Signal Processing, 2010, 24(2): 559-566.
  • 9Huang Guangbin, Zhu Qinyu, Siew C K. Extreme Learning Machine: a New Learning Scheme of Feedforward Neural Networks [C]//Institute of Electrical and Electronic Engineers, Neural Net works. International Joint Conference on Neural Networks. Budapest, 2004: 985-990.
  • 10Huang Guangbin, Zhu Qinyu, Siew C K. Extreme Learning Machine: Theory and Applications[J]. Neurocomputing, 2006, 70: 489-501.

引证文献7

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部