期刊文献+

Synthesis and Visible-light Photocatalytic Performance of C-doped Nb2O5 with High Surface Area 被引量:3

Synthesis and Visible-light Photocatalytic Performance of C-doped Nb2O5 with High Surface Area
原文传递
导出
摘要 C-doped Nb2O5 with abundant mesopores has been successfully synthesized through a facile solvothermal synthetic strategy followed by calcination treatment. The resulting C-doped Nb2O5 displayed the highest BET surface area(345 m^2/g) and large mesopore size(ca. 4.2 nm), capable of offering more accessible active sites as well as faster mass transfer for catalysis. Besides, the doping of C(2.21%, molar fraction) at the O sites in Nb2O5 lattice greatly enhanced visible-light response by lowering the band gap, thereby making the material a photocatalyst under visible-light irradiation. Typically, the C-doped Nb2O5 exhibited a high H2 evolution rate of ca. 39.10·μmol·g^-1·h^-1 and also degraded RhB dye completely after 30 min of visible light exposure, which turned out to be much better than Degussa P25 and pure Nb2O5 catalysts. C-doped Nb2O5 with abundant mesopores has been successfully synthesized through a facile solvothermal synthetic strategy followed by calcination treatment. The resulting C-doped Nb2O5 displayed the highest BET surface area(345 m^2/g) and large mesopore size(ca. 4.2 nm), capable of offering more accessible active sites as well as faster mass transfer for catalysis. Besides, the doping of C(2.21%, molar fraction) at the O sites in Nb2O5 lattice greatly enhanced visible-light response by lowering the band gap, thereby making the material a photocatalyst under visible-light irradiation. Typically, the C-doped Nb2O5 exhibited a high H2 evolution rate of ca. 39.10·μmol·g^-1·h^-1 and also degraded RhB dye completely after 30 min of visible light exposure, which turned out to be much better than Degussa P25 and pure Nb2O5 catalysts.
出处 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2018年第2期274-278,共5页 高等学校化学研究(英文版)
基金 Supported by the National Natural Science Foundation of China(No.21390394) and the National Basic Research Program of China(Nos. 2012CB821700, 2011CB808703).
关键词 C-Doped Highest BET surface area Degradation RhB H2 evolution C-Doped Highest BET surface area Degradation RhB H2 evolution
  • 相关文献

同被引文献32

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部