期刊文献+

SOLUTIONS TO BSDES DRIVEN BY BOTH FRACTIONAL BROWNIAN MOTIONS AND THE UNDERLYING STANDARD BROWNIAN MOTIONS

SOLUTIONS TO BSDES DRIVEN BY BOTH FRACTIONAL BROWNIAN MOTIONS AND THE UNDERLYING STANDARD BROWNIAN MOTIONS
下载PDF
导出
摘要 The local existence and uniqueness of the solutions to backward stochastic differential equations(BSDEs, in short) driven by both fractional Brownian motions with Hurst parameter H ∈ (1/2, 1) and the underlying standard Brownian motions are studied. The generalization of the It6 formula involving the fractional and standard Brownian motions is provided. By theory of Malliavin calculus and contraction mapping principle, the local existence and uniqueness of the solutions to BSDEs driven by both fractional Brownian motions and the underlying standard Brownian motions are obtained. The local existence and uniqueness of the solutions to backward stochastic differential equations(BSDEs, in short) driven by both fractional Brownian motions with Hurst parameter H ∈ (1/2, 1) and the underlying standard Brownian motions are studied. The generalization of the It6 formula involving the fractional and standard Brownian motions is provided. By theory of Malliavin calculus and contraction mapping principle, the local existence and uniqueness of the solutions to BSDEs driven by both fractional Brownian motions and the underlying standard Brownian motions are obtained.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2018年第2期681-694,共14页 数学物理学报(B辑英文版)
基金 supported by NSFC grant(11371169) China Automobile Industry Innovation and Development Joint Fund(U1564213)
关键词 Backward stochastic differential equations malliavin calculus fractional Brownian motions It5 formula Backward stochastic differential equations malliavin calculus fractional Brownian motions It5 formula
  • 相关文献

参考文献2

二级参考文献34

  • 1Alos, E., Mazet, O., Nualart, D. Stochstic calculus with respect to fractional Brownian motion with Hurst paprameter lesser that 1/2. Stochastic Process. Appl., 86:121-139 (2000).
  • 2Alos, E., Nualart, D. Stochastic integration with respect to the fractional Brownian motion. Stochastics and Stochastics Reports 75:129-152 (2003).
  • 3Bender, C. Explicit solutions of a class of linear fractional BSDEs. Systems & Control Letters, 54:671-680 (2005).
  • 4Biagini, F., Hu, Y., Oksendal, B., Sulem, A. A stochastic maximum principle for processes driven by fractional Brownian motions. Stochastic Process. Appl., 100:233-253 (2002).
  • 5Biagini, F., Oksendal, B. Minimal variance hedging for fractional Brownian motion. Methods and Appli- cations of Analysis 10:347-362 (2003).
  • 6Carmona, P., Coutin, L., Montseny, G. Stochastic integration with respect to fractional Brownian motion. Annales de l'Institut Henri Poincard-Probabilites et Statisques~ 39:27 68 (2003).
  • 7Coutin, L., Qian, Z.M. Stochastic differential equations for fractional Brownian motions. C.R. Acad. Sci. Paris Serie I, 331:75-80 (2000).
  • 8Dai, W., Heyde, C.C. ItS's formula with respect to fractional Brownian motion and its application. J. AppL Math. Stoch. AnaL, 10:439-448 (1996).
  • 9Decreusefond, L., Ustiinel, A.S. Stochastic analysis of the fractional Brownian motion. Potential Anal., 10:177-214 (1999).
  • 10Duncan, T.E., Hu, Y., Pasik-Duncan, B. Stochastic calculus for fractional Brownian motion. I. Theory. SIAM J. Control Optim., 38:582 612 (2000).

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部