期刊文献+

城市交通区域的迭代学习边界控制 被引量:7

Iterative learning perimeter control for urban traffic region
原文传递
导出
摘要 已有的边界控制方法主要是基于模型的反馈控制算法,其实际应用效果受制于模型参数的标定和环境的影响.迭代学习控制以完全跟踪为目标,仅利用较少的模型信息就可以沿迭代轴实现对系统期望输出的完全跟踪.基于城市交通流的重复特性,提出一种城市交通区域的迭代学习边界控制方法,给出跟踪误差收敛性分析.以日本横滨区域为对象分别进行3种场景的仿真:早高峰、晚高峰和中心区域拥堵.仿真结果表明,迭代学习控制方法对于各种场景下的区域路网交通均能达到较为理想的控制效果. At present, macroscopic fundamental diagram(MFD)-based perimeter control methods are mostly based on the feedback control algorithm, and their practical application are susceptible to environment. Iterative learning control(ILC) can be used in repetitive regional perimeter control of urban traffic with the features of tracking completely.Therefore, based on the repetitive nature of urban traffic flow, an iterative learning perimeter control for an urban region is presented, and the convergence of tracking error is analyzed. Three scenarios, namely, morning and evening peak,central area congestion, and inhomogeneous cell, are simulated. The results show that the ILC method for road network can obtain ideal control effects under different scenarios.
作者 金尚泰 丁莹 殷辰堃 侯忠生 JIN Shang-tait, DING Ying, YIN Chen-kun, HOU Zhong-sheng(School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, Chin)
出处 《控制与决策》 EI CSCD 北大核心 2018年第4期633-638,共6页 Control and Decision
基金 国家自然科学基金项目(61573054 61433002 61403025)
关键词 边界控制 宏观基本图 迭代学习控制 perimeter control macroscopic fundamental diagram iterative learning control
  • 相关文献

参考文献7

二级参考文献147

  • 1张辉,陈阳舟,杨玉珍,李世伟.基于Multi-Agent的区域交通协调控制研究[J].交通与计算机,2006,24(2):94-98. 被引量:9
  • 2Uchiyama M. Formation of High Speed Motion Pattern of Mechanical Arm by Trial[J]. Trans of the Society of Instrumentation and Control Engineers, 1978, 19(5):706-712.
  • 3Arimoto S, Kawamura S, Miyazaki F. Bettering Operation of Robots by Learning[J]. J of Robotic Systems , 1984, 1(2):123-140.
  • 4Moore K L. Iterative Learning Control--An Expository Overview[J]. Applied and Computational Controls, Signal Processing and Circuits , 1998, 1(1): 151-214.
  • 5Moore K L, Chen Y Q. An Optimal Design of PD-type Iterative Learning Control with Monotonic Convergence[A]. Proc of the 2002 IEEE Int Symposium on Intelligent Control[C]. Vancouver, 2002: 55-60.
  • 6Park K H, Bien Z, Wang D H. A Study on the Robustness of a PID-type Iterative Learning Controller Against Initial State Error[J]. Int J of System Science, 1999, 30(1):49-59.
  • 7Moore K L, Chen Y Q. A Separative High-order Framework for Monotonic Convergent Iterative Learning Controller Design[A]. Proc of the American Control Conf[C]. Denver, 2003. 3644-3649.
  • 8Chen Y, Gong Z, Wen C. Analysis of A High-order Iterative Learning Control Algorithm for Uncertain Nonlinear Systems with State Delays[J]. Automatica, 1998, 34(3):345-353.
  • 9Xu J X, Tan Y. Linear and Nonlinear Iterative Learning Control[M]. Berlin: Springer-Verlag, 2003: 69-82.
  • 10Norrlof M, Gunnarsson S. Disturbance Aspects of Iterative Learning Control[J]. Engineering Applications of Artificial Intelligence, 2001, 14(1):87-94.

共引文献152

同被引文献33

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部