期刊文献+

具有不确定转移概率的马尔科夫复杂网络的聚类同步 被引量:3

Cluster synchronization of Markovian complex networks with uncertain transition probabilities
原文传递
导出
摘要 研究具有不确定转移概率的马尔科夫复杂网络系统的聚类同步问题,系统模型包含耦合的离散时变时滞和耦合的分布时变时滞.通过充分考虑转移概率的性质和不确定区域的特性,用一个含有较少变量的有效技术代替传统的Young不等式来约束转移率中的不确定项.同时,利用增广李雅普诺夫泛函和具有较小保守性的积分不等式,给出新的依赖时滞和时滞导数上下界的聚类同步准则.最后通过数值仿真验证所提出方法的有效性. This paper studies the cluster synchronization of Markovian complex networks with uncertain transition rates.This system model contains constant coupled discrete time varying delay and coupled distributed time varying delay. By fully considering the property of transition rates and the characteristic of uncertain domains, a more effective technique in stead of the traditional Young inequality is used to bind the uncertain terms in the transition rates. By applying the augmented Lyapunov-Krasovskii functional and a less conservative integral inequality, new cluster synchronization criteria are obtained, which contains the bounds of the delay and the derivative of delay. The example simulation demonstrates the effectiveness of the proposed method.
作者 王燕锋 李祖欣 全立地 郭晓瑞 WANG Yan-feng, LI Zu-xin, QUAN Li-di, GUO Xiao-rui(College of Engineering, HuzhouUniversity, Huzhou313000, Chin)
出处 《控制与决策》 EI CSCD 北大核心 2018年第4期741-748,共8页 Control and Decision
基金 湖州市自然科学基金项目(2014YZ07)
关键词 聚类同步 不确定转移率 马尔科夫复杂网络 增广李雅普诺夫泛函 cluster synchronization uncertain transition probabilities Markovian complex networks augmentedLyapunov-Krasovskii functional
  • 相关文献

参考文献4

二级参考文献54

  • 1Liao T, Tsai S. Adaptive synchronization of chaotic systems and its application to secure communications[J]. Chaos, Solitons and Fractals, 2000,11(9): 1387-1396.
  • 2Zhou J, Lu J A, Lv J H. Adaptive synchronization of an uncertain complex dynamical network[J]. IEEE Trans on Automatic Control, 2006, 51(4): 652-656.
  • 3Sun H Y, Zhang Q L, Li N. Synchronization control of united complex dynamical networks with multi-links[J]. Int J of Innovative Computing, Information and Control, 2011, 7(2): 927-940.
  • 4Sun H Y, Li N, Sun H, et al. Adaptive synchronization control of the delayed complex dynamical networks and its application on electromechanical systems[J]. ICIC Express Letters, 2011, 5(10), 3605-3611.
  • 5Yu W W, Chen G R, Lv J H. On pinning synchronization of complex dynamical networks[J]. Automatica, 2009, 45(2): 429-435.
  • 6Lu J Q, Ho D W C, Cao J D. An unified synchronization criterion for impulsive dynamical networks[J]. Automatica, 2010, 46(7): 1215-1221.
  • 7Cai S M, Liu Z R, Xu F D, et al. Periodically intermittent controlling complex dynamical networks with time-varying delays to a desired orbit[J]. Physics Letters A, 2009, 373(42): 3846-3854.
  • 8Xia W G, Cao J D. Pinning synchronization of delayed dynamical networks via periodically intermittent control[J]. Chaos, 2009, 19(1): 013120.
  • 9Pan L J, Cao J D. Stochastic quasi-synchronization for delayed dynamical networks via intermittent control[J]. Commun Nonlinear Science Numer Simulation, 2012, 17(3): 1332-1343.
  • 10Hu C, Yu J, Jiang H J, et al. Exponential synchronization of complex networks with finite distributed delays coupling[J]. IEEE Trans on Neural Networks, 2011, 22(12): 1999-2010.

共引文献13

同被引文献18

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部