期刊文献+

平滑l_0范数约束的β-NMF及其在聚类中的应用

Smooth l_0 Norm Constrained β-NMF and Its Application to Clustering of Gene Expression Data
下载PDF
导出
摘要 针对基因表达数据噪声大、冗余性较高,传统的NMF算法在基因表达数据聚类中的低效性问题,提出了一种平滑的l_0范数约束的β散度的矩阵分解与K-means相结合的聚类算法,应用到基因表达数据当中;将平滑的l_0范数约束引入到基于β散度的矩阵分解的目标函数中,从而提取有用特征信息用于聚类;最后通过实验比较,改进的算法平均聚类精度达到70%,比传统的NMF聚类算法精度提高了11%,聚类效果相较其他方法显著。 Based on high noise and redundancy of gene expression data and that traditional NMF algorithm is inefficient in the clustering of gene expression data, a new clustering method of beta divergence matrix decomposition under the constraint of smooth l_0 norm and the combination K-means is presented,and the new clustering method is applied to gene expression data. The smooth l_0 norm is introduced into the objective function of matrix decomposition based on beta divergence so as to extract the useful feature information for the clustering.Finally,compared by experiments,the average clustering accuracy of the improved algorithm reaches 70 percent,which is 11 percent higher than that of the traditional NMF clustering algorithm,and clustering effect is more significant than other methods.
作者 崔建 游春芝 CUI Jian, YOU Chun - zhi(Basic Medicine Department, Fenyang College, Shanxi Medical University, Shanxi Luliang 032200, Chin)
出处 《重庆工商大学学报(自然科学版)》 2018年第2期31-35,共5页 Journal of Chongqing Technology and Business University:Natural Science Edition
关键词 基因表达数据 β散度 聚类 矩阵分解 gene expression data beta divergence clustering matrix decomposition
  • 相关文献

参考文献3

二级参考文献25

  • 1张雷,李人厚.人工免疫C-均值聚类算法[J].西安交通大学学报,2005,39(8):836-839. 被引量:17
  • 2张世勇.一种新的混合粒子群优化算法[J].重庆工商大学学报(自然科学版),2007,24(3):241-245. 被引量:6
  • 3MACQUEEN J. Some methods for classification and analysis of multivariate observations [ C]. In: Proceedings of the 5th Berkeley Symposium on Mathematics Statistic Problem, 1967. 281 -297.
  • 4SARKAR M, YEGNANARAYANA B, KHEMANI D. A clustering algorithm using an evolutionary programming - based approach [ J ]. Pattern Recognition Letters, 1997,18 (10) : 975 - 986.
  • 5KRISHNA K, MURTY M. Genetic K- means algorithm [J]. IEEE Trans on System, Man and Cybernetics: Part B, 1999, 29(3) :433 -439.
  • 6CLERC M. The swarm and the queen : towards a deterministic and adaptive particle swarm optimization [ C ]. In: Proceedings of the IEEE Congress on Evolutionary Computation, 1999. 1951 -1957.
  • 7Lee D D, Seung H S. Learning the parts of objects by non negative matrix factorization[J]. Nature, 1999,401(6755) : 788 - 791.
  • 8Zhi R, Flierl M, Ruan Q, et al. Facial expression recognition based on graph-preserving sparse non negative matrix factorization[C]// Proc. of the IEEE International Image processing, 2009 : 3257 - 3260.
  • 9Sandier R, Lindenbaum M. Non-negative matrix factorization with earth mover's distance metrie[C]// Proc.of the IEEE Conference on Computer Vision and Pattern Recognition. 2009: 1-8.
  • 10Fevotte C, Bertin N, Durrieu J L. Non-negative matrix factori zation with the Itakura Saito divergence: with application to music analysis[J]. Neural Computation, 2009,21 ( 3 ) : 793- 830.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部