期刊文献+

Bezier曲面三角形边界元法及其在特高压绝缘子串电场计算中的应用

Research and application of Bezier curved surface trilateral BEM for calculating UHV insulators electric fields
原文传递
导出
摘要 为了在用边界元法计算三维静电场电位和电场分布时能够得到较精确结果,提出了Bezier曲面三角形边界元方法.该方法用ANSYS建模和二阶剖分,利用剖分得至U的节点坐标信息和面积坐标系下对应的Bernstein基函数构造双2次Bezier曲面参数方程,再利用面积比值法构造对应于Bezier曲面顶点节点的形状函数,由Bezier曲面参数方程和形状函数可得到Bezier曲面边界元方程.以计算导体球的电场和电位分布为例进行验算,由计算结果可知:在计算相同剖分节点的情况下,Bezier曲面三角形边界元法比一阶平面三角形边界元法具有更高的计算精度.最后,将Bezier曲面三角形边界元法应用于特高压绝缘子串的电场计算. In order to determine the electric field and the potential distribution of 3D electrostatic field accurately by using the boundary element method (BEM),this paper proposes Bezier curved surface trilateral BEM. This method uses ANSYS to build the model and second-order element to mesh the boundary sur face. Making use of the second-order element node information and corresponding Bernstein basis functions which are in the area coordinates construct the corresponding Bezier curve parameter equation. Using area ratio method constructs shape function which is correspond to the surface trilateral element. Last the Bezier curved surface boundary element equation can be obtained by Bezier curve parameter equation and the surface element shape function. In this paper, the electric field and potential distribution calculation of spherical electrode is given. The calculating results show that when the grid nodes is equal, calculation precision of Bezier curved surface trilateral BEM is obviously improved in compared with the first-order plane trilateral BEM. Finally, the Bezier curved surface trilateral BEM is applied to UHV insulator string electric field calculation.
作者 李亚莎 代亚平 花旭 沈星如 LI Yasha,DAI Yaping,HUA Xu,SHEN Xingru(College of Electrical Engineering and Renewable Energy, China Three Gorges University, Yichang 44,3002, Chin)
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2018年第3期220-224,244,共6页 Engineering Journal of Wuhan University
基金 国家自然科学基金项目(编号:51577105)
关键词 静电场计算 BERNSTEIN基函数 BEZIER曲面 形状函数 边界元方法 electrostatic field calculation Bernstein basis function Bezier curved surface shape function boundary element method (BEM)
  • 相关文献

参考文献15

二级参考文献153

共引文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部