期刊文献+

基于COMSOL PDE仿真的垂直板驻点混合对流与传热

Mixed convection stagnation-point flow towards a stretching vertical sheet based on COMSOL
原文传递
导出
摘要 研究了不可压缩粘性流体在垂直指数延伸壁面上的边界层流动与传热问题.通过相似变换将边界层控制方程转换为非线性常微分方程,并利用COMSOL软件的PDE(偏微分方程)模块进行仿真求解.讨论顺流和逆流时浮力参数λ和Prandtl数Pr对流体流动和传热特性的影响.结果显示:顺流时,表面摩擦系数和Nusselt数均随浮力参数λ的增大而增大;随着Pr数增大,Nusselt数增大而表面摩擦系数减小.逆流时,表面摩擦系数和Nusselt数均随浮力参数λ的增大而减小,随Pr增大而增大. The paper studies the mixed convection flow and heat transfer of an incompressible viscous fluid about a stagnation-point on an exponentially vertical stretching sheet. The governing equations describing the stagnation-point flow are reduced to a differential equation by using the similarity transformations. Then employing PDE module in COMSOL software to solve the nonlinear problem. Finally, the effects of the buoyancy parameter and the Prandtl number parameter on the features of the flow and heat transfer characteristics are analyzed and discussed in detail. The results show that for assisting flow, both the skin friction coefficient and the Nusselt number increase as the buoyancy parameter increases; but only the Nusselt number increases the skin friction coefficient decreases as the Prandtl number increases. For opposing flow, both the skin friction coefficient and the Nusselt number decrease as the buoyancy parameter increases, while both increase as Pr increases.
作者 许晓勤 陈淑梅 XU Xiaoqin1,2, CHEN Shumei2(1.Department of Automobile Application Engineering, Fujian Chuanzheng Communications College, Fuzhou 350007,China; 2. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, Chin)
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2018年第3期262-267,共6页 Engineering Journal of Wuhan University
基金 中央财政支持地方高校发展专项资金资助项目(编号:闽教财[2012]788号)
关键词 驻点流 垂直板 传热 边界层 COMSOL stagnation-point flow vertical sheet heat transfer boundary layer COMSOL
  • 相关文献

参考文献1

二级参考文献18

  • 1Crane L I. Flow past a stretching plate[ J]. J Appl Mech Phys (ZAMP), 1970,21:545-657.
  • 2Brady J F, Acrivos A. Steady flow in a channel or tube with an accelerating surface velocity-an exact solution to the Navier-Stokes equations with reverse flow[J]. J Fluid Mech, 1981,112:127-150.
  • 3Jacobi A M. A scale analysis approach to the correlation of continuous moving sheet (backward boundary layer ) forced convective heat transfer[ J]. J Heat Trans- TASME, 1993,115 ( 4 ) : 1058-1061.
  • 4Gupta P S, Gupta A S. Heat and mass transfer on a stretching sheet with suction or blowing[ J ]. Can J Chem Eng, 1977,55:744-746.
  • 5Hussaini M Y, Laldn W D, Nachman A. On similarity solutions of a boundary layer problem with an upstream moving wall[ J ] . SIAM J Appl Math, 1987,47 (4):699-709.
  • 6McLeod J B, Rajagopal K R. On the uniqueness of flow of a Navier-stokes fluid due to a stretching boundary[ J]. Arch Ratl Mech Anal, 1987,98(4) :385-393.
  • 7Chen C K, Char M. Heat transfer of a continuous stretching surface with suction or blowing[J]. J Math Anal Appl , 1988,135(2) : 568-580.
  • 8Riley N, Weidman P D. Multiple solutions of the Falkner-Skan equation for flow past a stretching boundary[J]. SIAM J Appl Math, 1989,49(5) : 1350-1358.
  • 9Mahapatra T R, Gupta A S. Heat transfer in stagnation-point flow towards a stretching sheet[J]. Heat and Mass Transfer,2002,38(6) :517-521.
  • 10Khan S K. Heat transfer in a viscoelastic fluid flow over a stretching surface with heat source/sink,suction/blowing and radiation[ J]. Int J Heat Mass Transfer,2006,49(3-4):628-639.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部