期刊文献+

基于Rydberg原子的超宽频带射频传感器 被引量:10

Broadband Rydberg atom-based radio-frequency field sensor
下载PDF
导出
摘要 Rydberg原子具有极大的极化率和微波跃迁偶极矩,对外界电磁场非常敏感,可实现基于Rydberg原子的超宽频带射频电场的高分辨高灵敏测量.通过Rydberg原子的全光学无损的电磁感应透明探测手段,可以实现基于原子的快速免校准宽频带(0.01-1000 GHz)外电场的精密测量.对于频率大于1 GHz的微波场,由微波场耦合相邻Rydberg能级形成的Autler-Townes分裂进行测量;而对于频率小于1 GHz的长波射频场,由Rydberg能级的射频边带能级进行测量.这种方法是基于原子能级参数,可溯源到基本物理常量,不依赖于外界参考;且对电场无干扰,易于实现微型化和集成化,具有广泛的应用前景.本文主要综述了基于Rydberg原子的外电场测量的最新研究进展,重点介绍长波长射频场的测量,包括电场强度、频率以及极化方向的测量,详细介绍了其测量原理和探测灵敏度,并讨论了其应用前景及未来发展方向. Significant progress has been made in atom-based measurements of length, time, gravity and electromagnetic fields in recently years. Rydberg atom-based microwave electric field measurement, using electromagnetically induced trans- parency (EIT) in room temperature alkali-metal vapors, has been extensively investigated and aroused the broad interest. This approach may establish a new standard for the measurements of microwave (MW) and radio frequency (RF) electric fields. In this review, we describe the work on a new method of measuring electric fields based on quantum interference by using either cesium or rubidium atoms contained in a dielectric vapor cell. Rydberg atoms with principal quantum number n 〉〉 1 have large direct current (DC) polarizabilities and microwave transition dipole moments, thereby mak- ing them extremely sensitive to external electric fields. Using the Rydberg three-level EIT to detect the level splitting and shift that is induced by the external field, we can realize a rapid and robust self-calibration method of measuring the electric field in a frequency range from 0.01 GHz to 1000 GHz. For the MW electric field (frequency range 〉 1 GHz), the MW field causes the Rydberg states to split, known as an Autler-Townes splitting (A-T) effect when the applied microwave can resonate with adjacent Rydberg states. The MW coupled A-T splitting is proportional to the applied electric field strength, from which the field strength is measured. Using the EIT window, a high sensitivity of 3 ~V.cm-l-Hz-1/2 and small electric field of 1 [IV/cm are expected to be achieved with a modest setup, and the limita- tions of the sensitivity are also addressed in the review. For the RF field at frequency 〈 1 GHz, the RF field modulates the Rydberg level, causing AC Stark shifts and RF modulation sidebands. The RF modulated Rydberg spectra exhibit special structure that includes a series of exact crossings formed with the different-mj EIT lines, and avoided crossings formed with the fine-structure levels of equal rn~ and different J^s, which is used to calibrate and measure the RF field amplitude. On the other hand, the dependence of the EIT-line strength on the RF field polarization provides a fast and robust polarization measurement of RF fields based on matching experimental data with a theoretical simulation. The measurements of minimum strengths and sensitivity of RF fields based on Rydberg atoms are one order magnitude below the values obtained by traditional antenna methods. The atom-based field measurement paves the way for determining fields through calibration-free, invariable atomic properties and miniaturization. We also propose its various potential applications in the future.
作者 焦月春 赵建明 贾锁堂 Jiao Yue-Chun1)2) Zhao Jian-Ming1)2) Jia Suo-TangI)2) 1)(State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, 2) (Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2018年第7期117-125,共9页 Acta Physica Sinica
基金 国家重点研发计划(批准号:2017YFA0304203)、国家自然科学基金(批准号:61475090,61675123,61775124)、长江学者和创新团队发展计划(批准号:IRT13076)、国家自然科学基金重点项目(批准号:11434007)和山西省“1331工程”重点学科建设计划经费资助的课题.
关键词 RYDBERG原子 微波/射频传感器 量子相干效应 Rydberg atoms, MW/RF electrometry, quantum coherent effect
  • 相关文献

参考文献2

二级参考文献72

  • 1Hall J L 2006 Rev. Mod. Phys. 78 1279.
  • 2Savukov I M, Seltzer S J, Romalis M V, Sauer K L 2005 Phys. Rev. Lett. 95 063004.
  • 3Balabas M V, Karaulanov T, Ledbetter M P, Budker D 2010 Phys. Rev. Lett. 105 070801.
  • 4Wasilewski W, Jensen K, Krauter H, Renema J J, Bal- abas M V, Polzik E S 2010 Phys. Rev. Lett 104 133601.
  • 5Koschorreck M, Napolitano M, Dubost B, Mitchell M W 2010 Phys. Rev. Lett. 104 093602.
  • 6Wang P F, Ju C Y, Shi F Z, Du J F 2103 Chin. Sci. Bull. 58 2920.
  • 7Camparo J C 1998 Phys. Rev. Left. 80 222.
  • 8Swan-Wood T, Coffer J G, Camparo J C 2001 IEEE Trans. Inst. Meas. 50 1229.
  • 9Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antenn. Propag. 62 6169.
  • 10Sedlacek J A, Schwettmann A, Kubler H, Low R, Pfau T, Shaffer J P 2012 Nature Phys. 8 819.

共引文献28

同被引文献57

引证文献10

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部